Effective Solutions
Strategies to Prevent Ticker Blocking
1. Non-Blocking Channel Operations
func nonBlockingTicker() {
ticker := time.NewTicker(100 * time.Millisecond)
defer ticker.Stop()
for {
select {
case <-ticker.C:
select {
case result := <-longRunningTask():
// Process result without blocking
fmt.Println(result)
default:
// Skip if task is not ready
fmt.Println("Task not completed")
}
}
}
}
Solution Strategies
Strategy |
Description |
Benefit |
Buffered Channels |
Use channels with buffer |
Reduce immediate blocking |
Goroutine Pooling |
Manage concurrent tasks |
Control resource consumption |
Select with Default |
Prevent permanent blocking |
Maintain system responsiveness |
2. Goroutine Worker Pool Pattern
graph TD
A[Ticker] --> B[Task Queue]
B --> C[Worker Pool]
C --> D[Concurrent Processing]
D --> E[Result Handling]
Implementation Example
func workerPoolTicker() {
ticker := time.NewTicker(100 * time.Millisecond)
defer ticker.Stop()
jobs := make(chan int, 100)
results := make(chan int, 100)
// Create worker pool
for w := 1; w <= 3; w++ {
go worker(w, jobs, results)
}
for {
select {
case <-ticker.C:
// Non-blocking job submission
select {
case jobs <- rand.Intn(100):
default:
fmt.Println("Job queue full")
}
}
}
}
func worker(id int, jobs <-chan int, results chan<- int) {
for job := range jobs {
fmt.Printf("Worker %d processing job %d\n", id, job)
results <- job * 2
}
}
3. Context-Based Cancellation
func contextControlledTicker(ctx context.Context) {
ticker := time.NewTicker(100 * time.Millisecond)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
return
case <-ticker.C:
// Perform time-sensitive task
if err := performTask(); err != nil {
return
}
}
}
}
Key Principles
- Use non-blocking channel operations
- Implement worker pools
- Leverage context for controlled execution
- Monitor and limit resource consumption
LabEx recommends these advanced techniques to create robust, non-blocking ticker implementations in Go applications.