实际索引提取
实际索引提取场景
数据清理与预处理
def extract_invalid_entries(data):
invalid_indexes = [
index for index, item in enumerate(data)
if item is None or len(str(item)) == 0
]
return invalid_indexes
raw_data = ['apple', '', None, 'banana', '', 'cherry']
invalid_positions = extract_invalid_entries(raw_data)
print(invalid_positions) ## 输出: [1, 2, 4]
复杂过滤技术
多条件索引提取
students = [
{'name': 'Alice','score': 85, 'grade': 'A'},
{'name': 'Bob','score': 60, 'grade': 'C'},
{'name': 'Charlie','score': 75, 'grade': 'B'},
{'name': 'David','score': 90, 'grade': 'A'}
]
high_performers = [
index for index, student in enumerate(students)
if student['score'] > 80 and student['grade'] == 'A'
]
print(high_performers) ## 输出: [0, 3]
索引提取策略
策略 |
使用场景 |
复杂度 |
列表推导式 |
简单过滤 |
低 |
生成器表达式 |
内存效率 |
中等 |
使用 Lambda 函数过滤 |
动态条件 |
高 |
索引提取的 Mermaid 工作流程
flowchart TD
A[输入数据] --> B{提取条件}
B -->|条件满足| C[收集索引]
B -->|条件不满足| D[跳过索引]
C --> E[返回匹配的索引]
高级索引操作
组合多个提取条件
def extract_complex_indexes(data, conditions):
return [
index for index, item in enumerate(data)
if all(condition(item) for condition in conditions)
]
numbers = [10, 15, 20, 25, 30, 35, 40]
conditions = [
lambda x: x > 20,
lambda x: x % 2 == 0
]
result = extract_complex_indexes(numbers, conditions)
print(result) ## 输出: [4, 6]
LabEx Pro 提示
通过使用生成器表达式和惰性求值技术优化索引提取。
面向性能的方法
def lazy_index_extractor(data, condition):
return (index for index, item in enumerate(data) if condition(item))
## 高效内存使用
result = list(lazy_index_extractor(numbers, lambda x: x > 25))
print(result) ## 输出: [5, 6]
容错索引提取
def safe_index_extraction(data, condition):
try:
return [index for index, item in enumerate(data) if condition(item)]
except Exception as e:
print(f"提取错误: {e}")
return []