全局配置set_output
可以通过使用set_config
并将transform_output
设置为"pandas"
来全局配置set_output
API。
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.impute import SimpleImputer
from sklearn import set_config
set_config(transform_output="pandas")
num_pipe = make_pipeline(SimpleImputer(), StandardScaler())
num_cols = ["age", "fare"]
ct = ColumnTransformer(
(
("numerical", num_pipe, num_cols),
(
"categorical",
OneHotEncoder(
sparse_output=False, drop="if_binary", handle_unknown="ignore"
),
["embarked", "sex", "pclass"],
),
),
verbose_feature_names_out=False,
)
clf = make_pipeline(ct, SelectPercentile(percentile=50), LogisticRegression())
clf.fit(X_train, y_train)