实证验证
下一步是在20个新闻组文本数据集或手写数字数据集上对约翰逊 - 林登施特劳斯界限进行实证验证。我们将使用20个新闻组数据集,并使用稀疏随机矩阵将总共具有100k特征的300个文档投影到具有不同目标维度数 n_components
的较小欧几里得空间中。
import sys
from time import time
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_20newsgroups_vectorized
from sklearn.random_projection import SparseRandomProjection
from sklearn.metrics.pairwise import euclidean_distances
data = fetch_20newsgroups_vectorized().data[:300]
n_samples, n_features = data.shape
print(f"Embedding {n_samples} samples with dim {n_features} using various random projections")
n_components_range = np.array([300, 1_000, 10_000])
dists = euclidean_distances(data, squared=True).ravel()
## 仅选择不相同的样本对
nonzero = dists!= 0
dists = dists[nonzero]
for n_components in n_components_range:
t0 = time()
rp = SparseRandomProjection(n_components=n_components)
projected_data = rp.fit_transform(data)
print(f"Projected {n_samples} samples from {n_features} to {n_components} in {time() - t0:0.3f}s")
if hasattr(rp, "components_"):
n_bytes = rp.components_.data.nbytes
n_bytes += rp.components_.indices.nbytes
print(f"Random matrix with size: {n_bytes / 1e6:0.3f} MB")
projected_dists = euclidean_distances(projected_data, squared=True).ravel()[nonzero]
plt.figure()
min_dist = min(projected_dists.min(), dists.min())
max_dist = max(projected_dists.max(), dists.max())
plt.hexbin(
dists,
projected_dists,
gridsize=100,
cmap=plt.cm.PuBu,
extent=[min_dist, max_dist, min_dist, max_dist],
)
plt.xlabel("Pairwise squared distances in original space")
plt.ylabel("Pairwise squared distances in projected space")
plt.title("Pairwise distances distribution for n_components=%d" % n_components)
cb = plt.colorbar()
cb.set_label("Sample pairs counts")
rates = projected_dists / dists
print(f"Mean distances rate: {np.mean(rates):.2f} ({np.std(rates):.2f})")
plt.figure()
plt.hist(rates, bins=50, range=(0.0, 2.0), edgecolor="k", density=True)
plt.xlabel("Squared distances rate: projected / original")
plt.ylabel("Distribution of samples pairs")
plt.title("Histogram of pairwise distance rates for n_components=%d" % n_components)