Pandas DataFrame Pipe Method

PythonPythonBeginner
Practice Now

Introduction

The Pandas DataFrame pipe() method allows us to apply a method or multiple methods to the entire DataFrame in a sequential manner. This can be either a user-defined method or a built-in method. The pipe() method applies the specified method(s) to each individual element, row, or column of the DataFrame.

VM Tips

After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.

Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.

If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL python(("`Python`")) -.-> python/DataStructuresGroup(["`Data Structures`"]) python(("`Python`")) -.-> python/FunctionsGroup(["`Functions`"]) python(("`Python`")) -.-> python/ModulesandPackagesGroup(["`Modules and Packages`"]) python(("`Python`")) -.-> python/DataScienceandMachineLearningGroup(["`Data Science and Machine Learning`"]) python/DataStructuresGroup -.-> python/lists("`Lists`") python/DataStructuresGroup -.-> python/tuples("`Tuples`") python/DataStructuresGroup -.-> python/dictionaries("`Dictionaries`") python/FunctionsGroup -.-> python/function_definition("`Function Definition`") python/ModulesandPackagesGroup -.-> python/importing_modules("`Importing Modules`") python/DataScienceandMachineLearningGroup -.-> python/numerical_computing("`Numerical Computing`") python/DataScienceandMachineLearningGroup -.-> python/data_analysis("`Data Analysis`") subgraph Lab Skills python/lists -.-> lab-68690{{"`Pandas DataFrame Pipe Method`"}} python/tuples -.-> lab-68690{{"`Pandas DataFrame Pipe Method`"}} python/dictionaries -.-> lab-68690{{"`Pandas DataFrame Pipe Method`"}} python/function_definition -.-> lab-68690{{"`Pandas DataFrame Pipe Method`"}} python/importing_modules -.-> lab-68690{{"`Pandas DataFrame Pipe Method`"}} python/numerical_computing -.-> lab-68690{{"`Pandas DataFrame Pipe Method`"}} python/data_analysis -.-> lab-68690{{"`Pandas DataFrame Pipe Method`"}} end

Import the necessary libraries

To use the pipe() method, we need to import the pandas library as pd.

import pandas as pd

Define a user-defined method (optional)

If you want to apply a user-defined method, you need to define it before using the pipe() method. This method will be applied to the DataFrame.

def add(x):
    return x + 1

Create a DataFrame

Next, create a DataFrame on which you want to apply the pipe() method. This can be done by passing a dictionary to the pd.DataFrame() function.

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})

Apply the pipe() method

Now, we can apply the pipe() method to the DataFrame. This can be done by calling the pipe() method on the DataFrame object and passing the method (user-defined or built-in) as an argument.

df.pipe(add)

Summary

In this lab, we learned how to use the pandas DataFrame pipe() method to apply a method or multiple methods to the entire DataFrame. We saw how to define a user-defined method and apply it to the DataFrame using the pipe() method. Using this method, we can efficiently apply a method to each element, row, or column of the DataFrame.

Other Python Tutorials you may like