Pandas DataFrame Mul Method

PythonPythonBeginner
Practice Now

Introduction

This lab will demonstrate how to use the mul() method in the Pandas DataFrame class. The mul() method is used to multiply a DataFrame with another DataFrame, Series, or scalar value element-wise. It returns a new DataFrame with the result of the multiplication operation.

VM Tips

After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.

Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.

If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL python(("`Python`")) -.-> python/DataStructuresGroup(["`Data Structures`"]) python(("`Python`")) -.-> python/ModulesandPackagesGroup(["`Modules and Packages`"]) python(("`Python`")) -.-> python/DataScienceandMachineLearningGroup(["`Data Science and Machine Learning`"]) python(("`Python`")) -.-> python/FunctionsGroup(["`Functions`"]) python/DataStructuresGroup -.-> python/lists("`Lists`") python/DataStructuresGroup -.-> python/tuples("`Tuples`") python/DataStructuresGroup -.-> python/dictionaries("`Dictionaries`") python/ModulesandPackagesGroup -.-> python/importing_modules("`Importing Modules`") python/DataScienceandMachineLearningGroup -.-> python/numerical_computing("`Numerical Computing`") python/DataScienceandMachineLearningGroup -.-> python/data_analysis("`Data Analysis`") python/FunctionsGroup -.-> python/build_in_functions("`Build-in Functions`") subgraph Lab Skills python/lists -.-> lab-68672{{"`Pandas DataFrame Mul Method`"}} python/tuples -.-> lab-68672{{"`Pandas DataFrame Mul Method`"}} python/dictionaries -.-> lab-68672{{"`Pandas DataFrame Mul Method`"}} python/importing_modules -.-> lab-68672{{"`Pandas DataFrame Mul Method`"}} python/numerical_computing -.-> lab-68672{{"`Pandas DataFrame Mul Method`"}} python/data_analysis -.-> lab-68672{{"`Pandas DataFrame Mul Method`"}} python/build_in_functions -.-> lab-68672{{"`Pandas DataFrame Mul Method`"}} end

Import the required libraries

import pandas as pd

First, we need to import the Pandas library.

Create the initial DataFrame

df1 = pd.DataFrame({'a': [1, 5, 6],'b': [4, 6, 5],'c': [2, 8, 7]})

Create a DataFrame called df1 with three columns a, b, and c, containing the given values.

Multiply the DataFrame by a scalar value

df2 = df1.mul(2)
print(df2)

Multiply the DataFrame df1 by a scalar value of 2 using the mul() method. Print the result.

Multiply the DataFrame by another DataFrame

df3 = pd.DataFrame({'a': [2, 1, 1],'b': [1, 5, 8],'c': [7, 5, 6]})
df4 = df1.mul(df3)
print(df4)

Create another DataFrame called df3 with the given values. Multiply df1 by df3 using the mul() method. Print the result.

Handling missing values

df5 = pd.DataFrame({'a': [None, 1, 1],'b': [None, 5, 8]})
df6 = df1.mul(df5, fill_value=1)
print(df6)

Create another DataFrame df5 with some missing values. Multiply df1 by df5 using the mul() method. Use the fill_value parameter to replace missing values with 1. Print the result.

Summary

In this lab, we learned how to use the mul() method in the Pandas DataFrame class to multiply DataFrames element-wise. We saw examples of multiplying a DataFrame by a scalar value, another DataFrame, and handling missing values. The mul() method is a useful tool for performing element-wise multiplication operations on DataFrames.

Other Python Tutorials you may like