import re
def complex_case_converter(text, pattern_type):
patterns = {
'camel_to_snake': re.compile(r'(?<!^)(?=[A-Z])')
}
if pattern_type == 'camel_to_snake':
return patterns['camel_to_snake'].sub('_', text).lower()
return text
## Example usage
camel_text = "helloWorldPython"
snake_text = complex_case_converter(camel_text, 'camel_to_snake')
## Result: "hello_world_python"
graph TD
A[Input Text] --> B{Transformation Type}
B --> |Regex| C[Pattern-Based Conversion]
B --> |Custom Logic| D[Advanced Transformation]
B --> |Unicode| E[Multilingual Conversion]
Unicode and Internationalization Techniques
def unicode_case_transformer(text, locale='en'):
import unicodedata
## Normalize Unicode characters
normalized_text = unicodedata.normalize('NFKD', text)
## Locale-specific transformations
locale_map = {
'en': str.lower,
'tr': lambda x: x.lower().translate(str.maketrans('İ', 'i'))
}
return locale_map.get(locale, str.lower)(normalized_text)
## Example with Turkish character handling
text = "İstanbul"
transformed = unicode_case_transformer(text, 'tr')
## Result: "istanbul"
Advanced Conversion Techniques
Technique |
Description |
Complexity |
Use Case |
Regex Transformation |
Pattern-based conversions |
Medium |
Complex text parsing |
Unicode Normalization |
Handling international characters |
High |
Multilingual applications |
Custom Mapping |
Context-specific transformations |
High |
Domain-specific conversions |
def optimized_case_transformer(text, transform_type='smart'):
from functools import lru_cache
@lru_cache(maxsize=128)
def cached_transform(input_text):
if transform_type == 'smart':
## Intelligent transformation logic
if input_text.isupper():
return input_text.capitalize()
return input_text.lower()
return input_text
return cached_transform(text)
## Cached and intelligent transformation
result = optimized_case_transformer("HELLO world")
## Result: "Hello world"
class ContextualCaseTransformer:
def __init__(self):
self.context_rules = {
'programming': {
'snake_case': lambda x: x.lower().replace(' ', '_'),
'camel_case': lambda x: ''.join(word.capitalize() for word in x.split())
}
}
def transform(self, text, domain='programming', style='snake_case'):
return self.context_rules.get(domain, {}).get(style, str.lower)(text)
## Domain-specific transformation
transformer = ContextualCaseTransformer()
code_var = transformer.transform("hello world", domain='programming', style='snake_case')
## Result: "hello_world"
LabEx Best Practices
When implementing advanced transformations in LabEx environments:
- Prioritize readability
- Consider performance implications
- Implement robust error handling
- Use caching for repetitive transformations
By mastering these advanced techniques, developers can create sophisticated text case transformation solutions tailored to specific requirements.