Handling Techniques
Fundamental Error Handling Approaches
1. Try-Except Block
class RobustDescriptor:
def __set__(self, obj, value):
try:
if not self._validate(value):
raise ValueError("Invalid value")
self._value = value
except ValueError as e:
print(f"Validation Error: {e}")
self._value = None
2. Decorator-Based Handling
def validate_descriptor(func):
def wrapper(self, obj, value):
try:
return func(self, obj, value)
except Exception as e:
print(f"Descriptor Error: {e}")
return None
return wrapper
Error Handling Strategies
Strategy |
Approach |
Pros |
Cons |
Silent Handling |
Suppress Errors |
Prevents Crashes |
Hides Potential Issues |
Logging |
Record Errors |
Provides Traceability |
Performance Overhead |
Raising Custom Exceptions |
Detailed Error Reporting |
Precise Control |
Requires More Code |
Advanced Handling Techniques
Conditional Error Management
class SmartDescriptor:
def __set__(self, obj, value):
if self._is_critical_error(value):
raise ValueError("Critical validation failure")
elif self._is_warning_condition(value):
print("Warning: Suboptimal value")
self._value = value
Error Handling Workflow
graph TD
A[Descriptor Method] --> B{Validate Input}
B -->|Valid| C[Set/Get Value]
B -->|Invalid| D{Error Handling Strategy}
D -->|Log| E[Record Error]
D -->|Suppress| F[Return Default]
D -->|Raise| G[Throw Exception]
Best Practices
- Implement Comprehensive Validation
- Use Specific Exception Types
- Provide Meaningful Error Messages
- Consider Performance Impact
Context Management
class DescriptorContext:
def __enter__(self):
## Setup error handling context
pass
def __exit__(self, exc_type, exc_value, traceback):
## Cleanup and error management
if exc_type:
print(f"Descriptor error: {exc_value}")
return True ## Suppress exception
- Minimize performance overhead
- Balance between error prevention and flexibility
- Use type hints and runtime checks
Brought to you by LabEx, mastering Python descriptor error handling.