Practical Usage Examples
Real-World Skipped List Index Applications
Data Processing Scenarios
def process_large_dataset(data):
"""
Demonstrate efficient data processing using advanced indexing
"""
## Extract specific data segments
high_priority = data[::3] ## Every third element
low_priority = data[1::3] ## Alternate segment
return {
'high_priority': high_priority,
'low_priority': low_priority
}
## Sample dataset
dataset = list(range(100))
result = process_large_dataset(dataset)
Index Manipulation Techniques
def extract_conditional_indices(data, condition):
"""
Filter and extract indices based on specific conditions
"""
return [index for index, value in enumerate(data) if condition(value)]
## Example usage
numbers = [10, 15, 20, 25, 30, 35, 40]
even_indices = extract_conditional_indices(numbers, lambda x: x % 2 == 0)
Indexing Strategies Comparison
Strategy |
Use Case |
Performance |
Standard Slicing |
Simple range selection |
Low overhead |
Conditional Indexing |
Complex filtering |
Moderate complexity |
Generator-based Indexing |
Memory efficiency |
High scalability |
Visualization of Indexing Flow
graph LR
A[Original Data] --> B[Index Selection]
B --> C[Filtering Condition]
C --> D[Processed Result]
Advanced Indexing Patterns
def multi_dimensional_indexing(matrix):
"""
Handle complex multi-dimensional index extraction
"""
## Diagonal element extraction
diagonal = [matrix[i][i] for i in range(len(matrix))]
## Reverse diagonal extraction
reverse_diagonal = [matrix[i][len(matrix)-1-i] for i in range(len(matrix))]
return {
'main_diagonal': diagonal,
'reverse_diagonal': reverse_diagonal
}
## Example matrix
sample_matrix = [
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
]
result = multi_dimensional_indexing(sample_matrix)
When working in LabEx environments, consider:
- Memory-efficient indexing
- Lazy evaluation techniques
- Minimizing computational complexity
Error Handling in Indexing
def safe_index_access(data, indices):
"""
Safely handle index access with error checking
"""
try:
return [data[i] for i in indices if 0 <= i < len(data)]
except IndexError:
return []