Validation Strategies
Overview of Data Validation in MongoDB
Data validation is crucial for maintaining data quality and consistency in MongoDB databases. This section explores various strategies to ensure your data meets specific requirements.
JSON Schema Validation
Basic Schema Definition
db.createCollection("employees", {
validator: {
$jsonSchema: {
bsonType: "object",
required: ["name", "email", "age"],
properties: {
name: {
bsonType: "string",
description: "Must be a string and is required"
},
email: {
bsonType: "string",
pattern: "^.+@.+$",
description: "Must be a valid email address"
},
age: {
bsonType: "int",
minimum: 18,
maximum: 65,
description: "Must be an integer between 18 and 65"
}
}
}
}
})
Validation Strategy Types
graph TD
A[Validation Strategies] --> B[JSON Schema Validation]
A --> C[Conditional Validation]
A --> D[Unique Constraint Validation]
A --> E[Complex Validation Rules]
Comprehensive Validation Approaches
1. Field Type Validation
Validation Type |
Description |
Example |
Type Checking |
Ensure correct data type |
String, Integer, Array |
Range Validation |
Limit numeric values |
Age between 18-65 |
Pattern Matching |
Validate string formats |
Email, Phone Number |
2. Conditional Validation
db.createCollection("products", {
validator: {
$jsonSchema: {
bsonType: "object",
properties: {
productType: {
enum: ["digital", "physical"]
},
digitalProduct: {
bsonType: "object",
required: ["downloadLink"],
properties: {
downloadLink: {
bsonType: "string"
}
}
},
physicalProduct: {
bsonType: "object",
required: ["weight", "dimensions"],
properties: {
weight: {
bsonType: "double"
},
dimensions: {
bsonType: "object"
}
}
}
}
}
}
})
Advanced Validation Techniques
Custom Validation Rules
db.runCommand({
collMod: "employees",
validator: {
$expr: {
$and: [
{ $gte: ["$salary", 30000] },
{ $lte: ["$salary", 150000] }
]
}
}
})
Validation Error Handling
Error Modes
- Strict Mode: Reject documents that fail validation
- Warn Mode: Log validation errors but allow document insertion
Best Practices for LabEx Developers
- Define clear validation rules
- Use precise schema definitions
- Implement multiple validation layers
- Balance between strict validation and flexibility
- Regularly review and update validation strategies
- Keep validation rules simple
- Avoid overly complex validation logic
- Use indexing to improve validation performance
By implementing these validation strategies, LabEx developers can ensure high-quality, consistent data in MongoDB databases.