Performance optimization for numeric operations involves strategic approaches to enhance query speed and resource utilization.
graph TD
A[Performance Optimization] --> B[Query Efficiency]
A --> C[Indexing Strategy]
A --> D[Memory Management]
A --> E[Aggregation Optimization]
Optimization Technique |
Impact |
Complexity |
Proper Indexing |
High |
Low |
Query Projection |
Medium |
Low |
Aggregation Pipeline |
High |
Medium |
Denormalization |
High |
High |
Practical Optimization Techniques
1. Efficient Numeric Indexing
## Create compound numeric index
mongosh
use performanceDemo
db.transactions.createIndex({
amount: 1,
timestamp: -1
})
## Explain query performance
db.transactions.find({
amount: { $gt: 1000 }
}).explain("executionStats")
2. Aggregation Pipeline Optimization
## Optimize numeric aggregations
db.sales.aggregate([
{ $match: { amount: { $gte: 500 } } },
{ $group: {
_id: "$category",
totalRevenue: { $sum: "$amount" }
}},
{ $sort: { totalRevenue: -1 } }
])
graph LR
A[Query Optimization] --> B[Selective Projection]
B --> C[Efficient Indexing]
C --> D[Caching Mechanisms]
D --> E[Hardware Scaling]
Numeric Operation Benchmarking
- Use
explain()
for query analysis
- Monitor query execution times
- Implement selective projections
- Leverage compound indexes
LabEx suggests continuous performance monitoring and iterative optimization of numeric operations in MongoDB environments.
Optimization Checklist
- Minimize full collection scans
- Optimize index selection
- Use appropriate numeric types
- Implement smart aggregation strategies