Validation Techniques
Overview of Number Validation in MongoDB
Number validation ensures data integrity and prevents incorrect or malicious data entry. MongoDB provides multiple techniques to validate numeric data.
Validation Methods
1. Schema Validation
graph TD
A[Schema Validation] --> B{Validation Rules}
B --> C[Range Checks]
B --> D[Type Constraints]
B --> E[Custom Validators]
2. Validation Rules Example
## Create collection with number validation
db.createCollection("products", {
validator: {
$jsonSchema: {
bsonType: "object",
required: ["price", "quantity"],
properties: {
price: {
bsonType: "double",
minimum: 0,
maximum: 10000
},
quantity: {
bsonType: "int",
minimum: 0,
maximum: 1000
}
}
}
}
})
Validation Strategies
Strategy |
Description |
Use Case |
Range Validation |
Limits numeric values |
Prevent negative prices |
Type Validation |
Enforces specific number types |
Ensure consistent data types |
Custom Validation |
Complex validation logic |
Advanced business rules |
Advanced Validation Techniques
Regular Expression Validation
## Validate numeric patterns
db.numbers.insertOne({
value: {
$regex: /^[0-9]+$/
}
})
Compound Validation
## Multiple validation conditions
db.transactions.insertOne({
$expr: {
$and: [
{ $gte: ["$amount", 0] },
{ $lte: ["$amount", 1000000] }
]
}
})
Error Handling
graph TD
A[Validation Error] --> B{Error Type}
B --> |Duplicate| C[Reject Transaction]
B --> |Out of Range| D[Log and Notify]
B --> |Type Mismatch| E[Conversion or Rejection]
- Minimize complex validation rules
- Use indexed fields for faster validation
- Implement validation at application level
LabEx recommends a balanced approach to number validation, focusing on data integrity without compromising performance.