Introduction
In this lab, we will explore how to work with text data using scikit-learn, a popular machine learning library in Python. We will learn how to load text data, preprocess it, extract features, train a model, and evaluate its performance.
VM Tips
After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.
Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.
If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.
Skills Graph
%%%%{init: {'theme':'neutral'}}%%%%
flowchart RL
sklearn(("`Sklearn`")) -.-> sklearn/CoreModelsandAlgorithmsGroup(["`Core Models and Algorithms`"])
sklearn(("`Sklearn`")) -.-> sklearn/DataPreprocessingandFeatureEngineeringGroup(["`Data Preprocessing and Feature Engineering`"])
sklearn(("`Sklearn`")) -.-> sklearn/UtilitiesandDatasetsGroup(["`Utilities and Datasets`"])
ml(("`Machine Learning`")) -.-> ml/FrameworkandSoftwareGroup(["`Framework and Software`"])
sklearn/CoreModelsandAlgorithmsGroup -.-> sklearn/naive_bayes("`Naive Bayes`")
sklearn/DataPreprocessingandFeatureEngineeringGroup -.-> sklearn/feature_extraction("`Feature Extraction`")
sklearn/UtilitiesandDatasetsGroup -.-> sklearn/datasets("`Datasets`")
ml/FrameworkandSoftwareGroup -.-> ml/sklearn("`scikit-learn`")
subgraph Lab Skills
sklearn/naive_bayes -.-> lab-71103{{"`Working with Text Data`"}}
sklearn/feature_extraction -.-> lab-71103{{"`Working with Text Data`"}}
sklearn/datasets -.-> lab-71103{{"`Working with Text Data`"}}
ml/sklearn -.-> lab-71103{{"`Working with Text Data`"}}
end