Exploring Scikit-Learn SGD Classifiers

Machine LearningMachine LearningBeginner
Practice Now

This tutorial is from open-source community. Access the source code

Introduction

In this lab, we will explore Stochastic Gradient Descent (SGD), which is a powerful optimization algorithm commonly used in machine learning for solving large-scale and sparse problems. We will learn how to use the SGDClassifier and SGDRegressor classes from the scikit-learn library to train linear classifiers and regressors.

VM Tips

After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.

Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.

If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL sklearn(("`Sklearn`")) -.-> sklearn/ModelSelectionandEvaluationGroup(["`Model Selection and Evaluation`"]) sklearn(("`Sklearn`")) -.-> sklearn/UtilitiesandDatasetsGroup(["`Utilities and Datasets`"]) sklearn(("`Sklearn`")) -.-> sklearn/CoreModelsandAlgorithmsGroup(["`Core Models and Algorithms`"]) sklearn(("`Sklearn`")) -.-> sklearn/DataPreprocessingandFeatureEngineeringGroup(["`Data Preprocessing and Feature Engineering`"]) ml(("`Machine Learning`")) -.-> ml/FrameworkandSoftwareGroup(["`Framework and Software`"]) sklearn/ModelSelectionandEvaluationGroup -.-> sklearn/metrics("`Metrics`") sklearn/UtilitiesandDatasetsGroup -.-> sklearn/datasets("`Datasets`") sklearn/CoreModelsandAlgorithmsGroup -.-> sklearn/linear_model("`Linear Models`") sklearn/ModelSelectionandEvaluationGroup -.-> sklearn/model_selection("`Model Selection`") sklearn/DataPreprocessingandFeatureEngineeringGroup -.-> sklearn/preprocessing("`Preprocessing and Normalization`") ml/FrameworkandSoftwareGroup -.-> ml/sklearn("`scikit-learn`") subgraph Lab Skills sklearn/metrics -.-> lab-71100{{"`Exploring Scikit-Learn SGD Classifiers`"}} sklearn/datasets -.-> lab-71100{{"`Exploring Scikit-Learn SGD Classifiers`"}} sklearn/linear_model -.-> lab-71100{{"`Exploring Scikit-Learn SGD Classifiers`"}} sklearn/model_selection -.-> lab-71100{{"`Exploring Scikit-Learn SGD Classifiers`"}} sklearn/preprocessing -.-> lab-71100{{"`Exploring Scikit-Learn SGD Classifiers`"}} ml/sklearn -.-> lab-71100{{"`Exploring Scikit-Learn SGD Classifiers`"}} end

Import the necessary libraries

First, we need to import the necessary libraries. We will be using the scikit-learn library for machine learning and data preprocessing.

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier, SGDRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, mean_squared_error

Load and preprocess the data

Next, we will load the iris dataset and preprocess it by scaling the features using StandardScaler.

## Load the iris dataset
iris = load_iris()
X, y = iris.data, iris.target

## Scale the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

## Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

Train a classifier using SGD

Now we will train a classifier using the SGDClassifier class. We will use the log_loss loss function and the l2 penalty.

## Train a classifier using SGD
clf = SGDClassifier(loss="log_loss", penalty="l2", max_iter=100, random_state=42)
clf.fit(X_train, y_train)

## Make predictions on the testing set
y_pred = clf.predict(X_test)

## Measure the accuracy of the classifier
accuracy = accuracy_score(y_test, y_pred)

## Print the accuracy
print("Classifier Accuracy:", accuracy)

Train a regressor using SGD

Next, we will train a regressor using the SGDRegressor class. We will use the squared_error loss function and the l2 penalty.

## Train a regressor using SGD
reg = SGDRegressor(loss="squared_error", penalty="l2", max_iter=100, random_state=42)
reg.fit(X_train, y_train)

## Make predictions on the testing set
y_pred = reg.predict(X_test)

## Measure the mean squared error of the regressor
mse = mean_squared_error(y_test, y_pred)

## Print the mean squared error
print("Regressor Mean Squared Error:", mse)

Summary

In this lab, we learned how to use Stochastic Gradient Descent (SGD) for training linear classifiers and regressors using the scikit-learn library. We trained a classifier on the iris dataset and measured its accuracy, and we trained a regressor and measured its mean squared error. SGD is a powerful optimization algorithm that can handle large-scale and sparse machine learning problems efficiently.

Other Machine Learning Tutorials you may like