Deployment Best Practices
Kubernetes Deployment Configuration Strategies
Optimizing Kubernetes deployments requires careful configuration and strategic planning to ensure reliability, scalability, and performance.
Resource Management and Limits
graph TD
A[Resource Configuration] --> B[CPU Limits]
A --> C[Memory Allocation]
A --> D[Request vs Limit]
B --> E[Prevent Resource Exhaustion]
C --> F[Optimize Container Performance]
Resource Configuration Example
resources:
requests:
cpu: 100m
memory: 128Mi
limits:
cpu: 500m
memory: 512Mi
Key Deployment Best Practices
Practice |
Description |
Impact |
Resource Specification |
Define precise CPU/memory limits |
Prevent cluster resource contention |
Replica Configuration |
Set appropriate replica counts |
Ensure high availability |
Rolling Update Strategy |
Implement controlled updates |
Minimize service disruption |
Health Checks |
Configure readiness/liveness probes |
Improve application reliability |
Advanced Deployment Configuration
Implement rolling update strategy:
strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 25%
maxUnavailable: 25%
Scaling and High Availability
Horizontal Pod Autoscaler configuration:
apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
name: nginx-autoscaler
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: nginx-deployment
minReplicas: 2
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
targetAverageUtilization: 70
Effective deployment practices enable robust, scalable, and performant Kubernetes container infrastructure, ensuring optimal application delivery and management.