Constraint Implementation
Core Constraint Techniques
1. Static Type Checking
template<typename T>
void validate_numeric_type() {
static_assert(std::is_arithmetic_v<T>,
"Type must be a numeric type");
}
2. Compile-Time Type Traits
template<typename T>
class NumericProcessor {
static_assert(std::is_integral_v<T> ||
std::is_floating_point_v<T>,
"Only numeric types are supported");
public:
T process(T value) {
return value * 2;
}
};
Modern C++20 Concepts
Defining Custom Concepts
template<typename T>
concept Numeric = std::is_arithmetic_v<T>;
template<Numeric T>
T calculate(T a, T b) {
return a + b;
}
Constraint Strategies
Strategy |
Description |
Use Case |
Type Traits |
Compile-time type checking |
Strict type validation |
Concepts |
Advanced type constraints |
Generic programming |
SFINAE |
Selective template instantiation |
Complex type filtering |
Constraint Decision Flow
flowchart TD
A[Input Type] --> B{Type Traits Check}
B -->|Numeric Type| C[Allow Operation]
B -->|Non-Numeric| D[Compilation Error]
C --> E[Execute Function]
Advanced Constraint Techniques
Combining Multiple Constraints
template<typename T>
concept SignedNumeric =
std::is_arithmetic_v<T> &&
std::is_signed_v<T>;
template<SignedNumeric T>
T safe_divide(T a, T b) {
return b != 0 ? a / b : 0;
}
- Constraints are resolved at compile-time
- No runtime overhead
- Improves code safety without performance penalty
LabEx Recommended Practices
- Use modern C++20 concepts when possible
- Leverage static_assert for compile-time checks
- Design flexible yet type-safe generic code
Error Handling Strategies
template<typename T>
T robust_numeric_operation(T value) {
if constexpr (std::is_integral_v<T>) {
// Integral-specific logic
return value * 2;
} else if constexpr (std::is_floating_point_v<T>) {
// Floating-point specific logic
return value / 2.0;
} else {
static_assert(always_false<T>,
"Unsupported type for operation");
}
}