Scikit-Learn Libsvm GUI

This tutorial is from open-source community. Access the source code

💡 Этот учебник переведен с английского с помощью ИИ. Чтобы просмотреть оригинал, вы можете перейти на английский оригинал

Введение

В этом уроке вы научитесь использовать Scikit-learn Libsvm GUI, которая представляет собой простой графический фронтенд для Libsvm, предназначенный в основном для учебных целей. Вы можете создавать точки данных с помощью нажатий мышью и визуализировать область принятия решений, индуцированную различными ядрами и настройками параметров.

Советы по работе с ВМ

После запуска ВМ перейдите в левый верхний угол и переключитесь на вкладку Notebook, чтобы приступить к практике в Jupyter Notebook.

Иногда вам может потребоваться подождать несколько секунд, пока Jupyter Notebook загрузится полностью. Валидация операций не может быть автоматизирована из-за ограничений в Jupyter Notebook.

Если вы сталкиваетесь с проблемами во время обучения, не стесняйтесь обращаться к Labby. Оставьте отзыв после занятия, и мы оперативно решим проблему для вас.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL sklearn(("Sklearn")) -.-> sklearn/UtilitiesandDatasetsGroup(["Utilities and Datasets"]) ml(("Machine Learning")) -.-> ml/FrameworkandSoftwareGroup(["Framework and Software"]) sklearn/UtilitiesandDatasetsGroup -.-> sklearn/datasets("Datasets") ml/FrameworkandSoftwareGroup -.-> ml/sklearn("scikit-learn") subgraph Lab Skills sklearn/datasets -.-> lab-49333{{"Scikit-Learn Libsvm GUI"}} ml/sklearn -.-> lab-49333{{"Scikit-Learn Libsvm GUI"}} end

Установка необходимых пакетов

Прежде чем приступить, убедитесь, что на вашем компьютере установлены следующие пакеты:

  • matplotlib
  • numpy
  • tkinter
  • scikit-learn

Вы можете установить эти пакеты с помощью pip.

Импорт необходимых пакетов

Первым шагом является импорт необходимых пакетов для проекта.

import matplotlib
matplotlib.use("TkAgg")
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg as NavigationToolbar2Tk
from matplotlib.figure import Figure
from matplotlib.contour import ContourSet
import sys
import numpy as np
import tkinter as Tk
from sklearn import svm
from sklearn.datasets import dump_svmlight_file

Создание класса модели

В этом шаге мы создадим класс Model, который будет хранить данные. Он реализует наблюдаемый объект в паттерне Наблюдатель и уведомляет зарегистрированных наблюдателей о событии изменения.

class Model:
    def __init__(self):
        self.observers = []
        self.surface = None
        self.data = []
        self.cls = None
        self.surface_type = 0

    def changed(self, event):
        for observer in self.observers:
            observer.update(event, self)

    def add_observer(self, observer):
        self.observers.append(observer)

    def set_surface(self, surface):
        self.surface = surface

    def dump_svmlight_file(self, file):
        data = np.array(self.data)
        X = data[:, 0:2]
        y = data[:, 2]
        dump_svmlight_file(X, y, file)

Создание класса Контроллера

Класс Контроллера используется для управления классом Model. Он содержит методы для настройки модели, добавления примеров, очистки данных и перестройки модели.

class Controller:
    def __init__(self, model):
        self.model = model
        self.kernel = Tk.IntVar()
        self.surface_type = Tk.IntVar()
        self.fitted = False

    def fit(self):
        train = np.array(self.model.data)
        X = train[:, 0:2]
        y = train[:, 2]
        C = float(self.complexity.get())
        gamma = float(self.gamma.get())
        coef0 = float(self.coef0.get())
        degree = int(self.degree.get())
        kernel_map = {0: "linear", 1: "rbf", 2: "poly"}
        if len(np.unique(y)) == 1:
            clf = svm.OneClassSVM(
                kernel=kernel_map[self.kernel.get()],
                gamma=gamma,
                coef0=coef0,
                degree=degree,
            )
            clf.fit(X)
        else:
            clf = svm.SVC(
                kernel=kernel_map[self.kernel.get()],
                C=C,
                gamma=gamma,
                coef0=coef0,
                degree=degree,
            )
            clf.fit(X, y)
        if hasattr(clf, "score"):
            print("Accuracy:", clf.score(X, y) * 100)
        X1, X2, Z = self.decision_surface(clf)
        self.model.clf = clf
        self.model.set_surface((X1, X2, Z))
        self.model.surface_type = self.surface_type.get()
        self.fitted = True
        self.model.changed("surface")

    def decision_surface(self, cls):
        delta = 1
        x = np.arange(x_min, x_max + delta, delta)
        y = np.arange(y_min, y_max + delta, delta)
        X1, X2 = np.meshgrid(x, y)
        Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()])
        Z = Z.reshape(X1.shape)
        return X1, X2, Z

    def clear_data(self):
        self.model.data = []
        self.fitted = False
        self.model.changed("clear")

    def add_example(self, x, y, label):
        self.model.data.append((x, y, label))
        self.model.changed("example_added")
        self.refit()

    def refit(self):
        if self.fitted:
            self.fit()

Создание класса Представления

Класс Представления используется для отображения графического пользовательского интерфейса (GUI) и обработки взаимодействий пользователя.

class View:
    def __init__(self, root, controller):
        f = Figure()
        ax = f.add_subplot(111)
        ax.set_xticks([])
        ax.set_yticks([])
        ax.set_xlim((x_min, x_max))
        ax.set_ylim((y_min, y_max))
        canvas = FigureCanvasTkAgg(f, master=root)
        canvas.draw()
        canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
        canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
        canvas.mpl_connect("button_press_event", self.onclick)
        toolbar = NavigationToolbar2Tk(canvas, root)
        toolbar.update()
        self.controllbar = ControllBar(root, controller)
        self.f = f
        self.ax = ax
        self.canvas = canvas
        self.controller = controller
        self.contours = []
        self.c_labels = None
        self.plot_kernels()

    def plot_kernels(self):
        self.ax.text(-50, -60, "Linear: $u^T v$")
        self.ax.text(-20, -60, r"RBF: $\exp (-\gamma \| u-v \|^2)$")
        self.ax.text(10, -60, r"Poly: $(\gamma \, u^T v + r)^d$")

    def onclick(self, event):
        if event.xdata and event.ydata:
            if event.button == 1:
                self.controller.add_example(event.xdata, event.ydata, 1)
            elif event.button == 3:
                self.controller.add_example(event.xdata, event.ydata, -1)

    def update_example(self, model, idx):
        x, y, l = model.data[idx]
        if l == 1:
            color = "w"
        elif l == -1:
            color = "k"
        self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0)

    def update(self, event, model):
        if event == "examples_loaded":
            for i in range(len(model.data)):
                self.update_example(model, i)

        if event == "example_added":
            self.update_example(model, -1)

        if event == "clear":
            self.ax.clear()
            self.ax.set_xticks([])
            self.ax.set_yticks([])
            self.contours = []
            self.c_labels = None
            self.plot_kernels()

        if event == "surface":
            self.remove_surface()
            self.plot_support_vectors(model.clf.support_vectors_)
            self.plot_decision_surface(model.surface, model.surface_type)

        self.canvas.draw()

    def remove_surface(self):
        if len(self.contours) > 0:
            for contour in self.contours:
                if isinstance(contour, ContourSet):
                    for lineset in contour.collections:
                        lineset.remove()
                else:
                    contour.remove()
            self.contours = []

    def plot_support_vectors(self, support_vectors):
        cs = self.ax.scatter(
            support_vectors[:, 0],
            support_vectors[:, 1],
            s=80,
            edgecolors="k",
            facecolors="none",
        )
        self.contours.append(cs)

    def plot_decision_surface(self, surface, type):
        X1, X2, Z = surface
        if type == 0:
            levels = [-1.0, 0.0, 1.0]
            linestyles = ["dashed", "solid", "dashed"]
            colors = "k"
            self.contours.append(
                self.ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)
            )
        elif type == 1:
            self.contours.append(
                self.ax.contourf(
                    X1, X2, Z, 10, cmap=matplotlib.cm.bone, origin="lower", alpha=0.85
                )
            )
            self.contours.append(
                self.ax.contour(X1, X2, Z, [0.0], colors="k", linestyles=["solid"])
            )
        else:
            raise ValueError("surface type unknown")

Создание класса Панели управления

Класс Панели управления используется для управления вводами пользователя и отображения их на GUI.

class ControllBar:
    def __init__(self, root, controller):
        fm = Tk.Frame(root)
        kernel_group = Tk.Frame(fm)
        Tk.Radiobutton(
            kernel_group,
            text="Linear",
            variable=controller.kernel,
            value=0,
            command=controller.refit,
        ).pack(anchor=Tk.W)
        Tk.Radiobutton(
            kernel_group,
            text="RBF",
            variable=controller.kernel,
            value=1,
            command=controller.refit,
        ).pack(anchor=Tk.W)
        Tk.Radiobutton(
            kernel_group,
            text="Poly",
            variable=controller.kernel,
            value=2,
            command=controller.refit,
        ).pack(anchor=Tk.W)
        kernel_group.pack(side=Tk.LEFT)

        valbox = Tk.Frame(fm)
        controller.complexity = Tk.StringVar()
        controller.complexity.set("1.0")
        c = Tk.Frame(valbox)
        Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT)
        Tk.Entry(c, width=6, textvariable=controller.complexity).pack(side=Tk.LEFT)
        c.pack()

        controller.gamma = Tk.StringVar()
        controller.gamma.set("0.01")
        g = Tk.Frame(valbox)
        Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT)
        Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT)
        g.pack()

        controller.degree = Tk.StringVar()
        controller.degree.set("3")
        d = Tk.Frame(valbox)
        Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT)
        Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT)
        d.pack()

        controller.coef0 = Tk.StringVar()
        controller.coef0.set("0")
        r = Tk.Frame(valbox)
        Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT)
        Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT)
        r.pack()
        valbox.pack(side=Tk.LEFT)

        cmap_group = Tk.Frame(fm)
        Tk.Radiobutton(
            cmap_group,
            text="Hyperplanes",
            variable=controller.surface_type,
            value=0,
            command=controller.refit,
        ).pack(anchor=Tk.W)
        Tk.Radiobutton(
            cmap_group,
            text="Surface",
            variable=controller.surface_type,
            value=1,
            command=controller.refit,
        ).pack(anchor=Tk.W)

        cmap_group.pack(side=Tk.LEFT)

        train_button = Tk.Button(fm, text="Fit", width=5, command=controller.fit)
        train_button.pack()
        fm.pack(side=Tk.LEFT)
        Tk.Button(fm, text="Clear", width=5, command=controller.clear_data).pack(
            side=Tk.LEFT
        )

Создание основной функции

Основная функция используется для запуска программы.

def main(argv):
    root = Tk.Tk()
    model = Model()
    controller = Controller(model)
    root.wm_title("Scikit-learn Libsvm GUI")
    view = View(root, controller)
    model.add_observer(view)
    Tk.mainloop()

Запустите программу

Теперь вы можете запустить программу, вызвав главную функцию.

if __name__ == "__main__":
    main(sys.argv)

Резюме

В этом руководстве вы узнали, как использовать графический интерфейс Scikit-learn Libsvm для создания точек данных путём нажатия на экран и визуализации области принятия решений, образованной различными ядрами и настройками параметров. Вы также узнали, как создать классы Model, Controller, View и ControllBar, а также как запустить программу.