Введение
Линейный и квадратичный дискриминантный анализ (LDA и QDA) - это два классических классификатора, используемых в машинном обучении. LDA использует линейную поверхность принятия решений, в то время как QDA использует квадратичную поверхность принятия решений. Эти классификаторы популярны, потому что имеют аналитические решения, хорошо работают на практике и не требуют настройки гиперпараметров.
В этом лабораторном занятии мы рассмотрим, как выполнять LDA и QDA с использованием scikit-learn, популярной библиотеки машинного обучения на Python.
Советы по виртуальной машине
После запуска виртуальной машины нажмите в левом верхнем углу, чтобы переключиться на вкладку Notebook и получить доступ к Jupyter Notebook для практики.
Иногда вам может потребоваться подождать несколько секунд, пока Jupyter Notebook загрузится. Валидация операций не может быть автоматизирована из-за ограничений Jupyter Notebook.
Если у вас возникнут проблемы во время обучения, не стесняйтесь обращаться к Labby. Оставьте отзыв после занятия, и мы оперативно решим проблему для вас.