# Introduction In this lab, we will explore Stochastic Gradient Descent (SGD), which is a powerful optimization algorithm commonly used in machine learning for solving large-scale and sparse problems. We will learn how to use the SGDClassifier and SGDRegressor classes from the scikit-learn library to train linear classifiers and regressors. ## VM Tips After the VM startup is done, click the top left corner to switch to the **Notebook** tab to access Jupyter Notebook for practice. Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook. If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.
Click the virtual machine below to start practicing