# Introduction This lab will show how to compare nearest neighbors classification with and without Neighborhood Components Analysis (NCA). We will plot the class decision boundaries given by a Nearest Neighbors classifier when using the Euclidean distance on the original features, versus using the Euclidean distance after the transformation learned by Neighborhood Components Analysis. The latter aims to find a linear transformation that maximizes the (stochastic) nearest neighbor classification accuracy on the training set. We will use the Iris dataset which contains 3 classes of 50 instances each. ## VM Tips After the VM startup is done, click the top left corner to switch to the **Notebook** tab to access Jupyter Notebook for practice. Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook. If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.
Click the virtual machine below to start practicing