疎な逆共分散推定

Machine LearningMachine LearningBeginner
今すぐ練習

This tutorial is from open-source community. Access the source code

💡 このチュートリアルは英語版からAIによって翻訳されています。原文を確認するには、 ここをクリックしてください

はじめに

この実験では、少数のサンプルから共分散と疎精度を学習するために、GraphicalLasso推定器をどのように使用するかを示します。チュートリアルでは、データの生成、共分散の推定、結果のプロット作成について説明します。

VMのヒント

VMの起動が完了したら、左上隅をクリックしてノートブックタブに切り替え、Jupyter Notebookを使って練習しましょう。

Jupyter Notebookが読み込み終わるまで数秒待つことがあります。Jupyter Notebookの制限により、操作の検証を自動化することはできません。

学習中に問題がある場合は、Labbyにお問い合わせください。セッション後にフィードバックを提供してください。すぐに問題を解決いたします。


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL sklearn(("Sklearn")) -.-> sklearn/AdvancedDataAnalysisandDimensionalityReductionGroup(["Advanced Data Analysis and Dimensionality Reduction"]) sklearn(("Sklearn")) -.-> sklearn/UtilitiesandDatasetsGroup(["Utilities and Datasets"]) ml(("Machine Learning")) -.-> ml/FrameworkandSoftwareGroup(["Framework and Software"]) sklearn/AdvancedDataAnalysisandDimensionalityReductionGroup -.-> sklearn/covariance("Covariance Estimators") sklearn/UtilitiesandDatasetsGroup -.-> sklearn/datasets("Datasets") ml/FrameworkandSoftwareGroup -.-> ml/sklearn("scikit-learn") subgraph Lab Skills sklearn/covariance -.-> lab-49295{{"疎な逆共分散推定"}} sklearn/datasets -.-> lab-49295{{"疎な逆共分散推定"}} ml/sklearn -.-> lab-49295{{"疎な逆共分散推定"}} end

データの生成

最初のステップは、データを生成することです。この場合、20個の特徴量を持つ60個のサンプルからなる小さなデータセットを生成します。良好な回復条件を保証するために、疎な逆共分散行列を使用します。

import numpy as np
from scipy import linalg
from sklearn.datasets import make_sparse_spd_matrix

n_samples = 60
n_features = 20

prng = np.random.RandomState(1)
prec = make_sparse_spd_matrix(
    n_features, alpha=0.98, smallest_coef=0.4, largest_coef=0.7, random_state=prng
)
cov = linalg.inv(prec)
d = np.sqrt(np.diag(cov))
cov /= d
cov /= d[:, np.newaxis]
prec *= d
prec *= d[:, np.newaxis]
X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples)
X -= X.mean(axis=0)
X /= X.std(axis=0)

共分散の推定

2番目のステップは、共分散を推定することです。疎な精度行列を学習するために、GraphicalLassoCVを使用します。また、結果をLedoit-Wolf推定器と比較します。

from sklearn.covariance import GraphicalLassoCV, ledoit_wolf

emp_cov = np.dot(X.T, X) / n_samples

model = GraphicalLassoCV()
model.fit(X)
cov_ = model.covariance_
prec_ = model.precision_

lw_cov_, _ = ledoit_wolf(X)
lw_prec_ = linalg.inv(lw_cov_)

結果をプロットする

3番目のステップは、結果をプロットすることです。共分散と精度をプロットします。また、モデル選択指標もプロットします。

import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6))
plt.subplots_adjust(left=0.02, right=0.98)

## 共分散をプロットする
covs = [
    ("Empirical", emp_cov),
    ("Ledoit-Wolf", lw_cov_),
    ("GraphicalLassoCV", cov_),
    ("True", cov),
]
vmax = cov_.max()
for i, (name, this_cov) in enumerate(covs):
    plt.subplot(2, 4, i + 1)
    plt.imshow(
        this_cov, interpolation="nearest", vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r
    )
    plt.xticks(())
    plt.yticks(())
    plt.title("%s covariance" % name)


## 精度をプロットする
precs = [
    ("Empirical", linalg.inv(emp_cov)),
    ("Ledoit-Wolf", lw_prec_),
    ("GraphicalLasso", prec_),
    ("True", prec),
]
vmax = 0.9 * prec_.max()
for i, (name, this_prec) in enumerate(precs):
    ax = plt.subplot(2, 4, i + 5)
    plt.imshow(
        np.ma.masked_equal(this_prec, 0),
        interpolation="nearest",
        vmin=-vmax,
        vmax=vmax,
        cmap=plt.cm.RdBu_r,
    )
    plt.xticks(())
    plt.yticks(())
    plt.title("%s precision" % name)
    if hasattr(ax, "set_facecolor"):
        ax.set_facecolor(".7")
    else:
        ax.set_axis_bgcolor(".7")

## モデル選択指標をプロットする
plt.figure(figsize=(4, 3))
plt.axes([0.2, 0.15, 0.75, 0.7])
plt.plot(model.cv_results_["alphas"], model.cv_results_["mean_test_score"], "o-")
plt.axvline(model.alpha_, color=".5")
plt.title("Model selection")
plt.ylabel("Cross-validation score")
plt.xlabel("alpha")

plt.show()

まとめ

この実験では、少数のサンプルから共分散と疎精度を学習するために、GraphicalLasso推定器をどのように使用するかを示しました。チュートリアルでは、データの生成、共分散の推定、結果のプロット作成について説明しました。