Scikit-Learn による分類器の比較

Machine LearningMachine LearningBeginner
オンラインで実践に進む

This tutorial is from open-source community. Access the source code

💡 このチュートリアルは英語版からAIによって翻訳されています。原文を確認するには、 ここをクリックしてください

はじめに

この実験では、合成データセットに対して Scikit-Learn のいくつかの分類器を比較します。この実験の目的は、異なる分類器の決定境界の性質を示すことです。データセットを前処理し、訓練用とテスト用に分割し、データセットをプロットします。その後、分類器を反復し、訓練データに分類器を適合させ、決定境界をプロットし、テストデータをプロットします。最後に、テストセットの分類精度を表示します。

VM のヒント

VM の起動が完了したら、左上隅をクリックしてノートブックタブに切り替え、Jupyter Notebook を使って練習しましょう。

時々、Jupyter Notebook が読み込み終わるまで数秒待つ必要がある場合があります。Jupyter Notebook の制限により、操作の検証は自動化できません。

学習中に問題に遭遇した場合は、Labby にお問い合わせください。セッション後にフィードバックを提供してください。すぐに問題を解決いたします。

必要なライブラリをインポートする

必要なライブラリをインポートして始めましょう。

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.inspection import DecisionBoundaryDisplay

データセットを準備する

3 つの合成データセット:moons、circles、および線形分離可能なデータセットを使用します。各データセットを訓練用とテスト用に分割することで前処理し、その後、データセットをプロットします。

## Prepare datasets
X, y = make_classification(
    n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1
)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)

datasets = [
    make_moons(noise=0.3, random_state=0),
    make_circles(noise=0.2, factor=0.5, random_state=1),
    linearly_separable,
]

## Plot datasets
figure = plt.figure(figsize=(27, 9))
i = 1
for ds_cnt, ds in enumerate(datasets):
    X, y = ds
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.4, random_state=42
    )

    x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
    y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5

    cm = plt.cm.RdBu
    cm_bright = ListedColormap(["#FF0000", "#0000FF"])
    ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
    if ds_cnt == 0:
        ax.set_title("Input data")
    ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k")
    ax.scatter(
        X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6, edgecolors="k"
    )
    ax.set_xlim(x_min, x_max)
    ax.set_ylim(y_min, y_max)
    ax.set_xticks(())
    ax.set_yticks(())
    i += 1

分類器を比較する

分類器を反復し、訓練データに分類器を適合させ、決定境界をプロットし、テストデータをプロットします。また、テストセットの分類精度も表示します。

## Define classifiers
names = [
    "Nearest Neighbors",
    "Linear SVM",
    "RBF SVM",
    "Gaussian Process",
    "Decision Tree",
    "Random Forest",
    "Neural Net",
    "AdaBoost",
    "Naive Bayes",
    "QDA",
]

classifiers = [
    KNeighborsClassifier(3),
    SVC(kernel="linear", C=0.025),
    SVC(gamma=2, C=1),
    GaussianProcessClassifier(1.0 * RBF(1.0)),
    DecisionTreeClassifier(max_depth=5),
    RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
    MLPClassifier(alpha=1, max_iter=1000),
    AdaBoostClassifier(),
    GaussianNB(),
    QuadraticDiscriminantAnalysis(),
]

## Compare classifiers
for name, clf in zip(names, classifiers):
    ax = plt.subplot(len(datasets), len(classifiers) + 1, i)

    clf = make_pipeline(StandardScaler(), clf)
    clf.fit(X_train, y_train)
    score = clf.score(X_test, y_test)
    DecisionBoundaryDisplay.from_estimator(
        clf, X, cmap=cm, alpha=0.8, ax=ax, eps=0.5
    )

    ax.scatter(
        X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k"
    )
    ax.scatter(
        X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6, edgecolors="k"
    )

    ax.set_xlim(x_min, x_max)
    ax.set_ylim(y_min, y_max)
    ax.set_xticks(())
    ax.set_yticks(())
    if ds_cnt == 0:
        ax.set_title(name)
    ax.text(
        x_max - 0.3,
        y_min + 0.3,
        ("%.2f" % score).lstrip("0"),
        size=15,
        horizontalalignment="right",
    )
    i += 1

まとめ

この実験では、合成データセットに対して Scikit-Learn のいくつかの分類器を比較しました。データセットを前処理し、訓練用とテスト用に分割し、データセットをプロットしました。その後、分類器を反復し、訓練データに分類器を適合させ、決定境界をプロットし、テストデータをプロットしました。最後に、テストセットの分類精度を表示しました。