Normalisations des cartes de couleurs de Matplotlib

PythonPythonBeginner
Pratiquer maintenant

This tutorial is from open-source community. Access the source code

💡 Ce tutoriel est traduit par l'IA à partir de la version anglaise. Pour voir la version originale, vous pouvez cliquer ici

Introduction

Dans ce laboratoire, nous allons apprendre à utiliser Matplotlib pour projeter des cartes de couleurs sur des données de manière non linéaire. Nous allons démontrer l'utilisation de norm pour créer des normalisations logarithmique, de loi de puissance, logarithmique symétrique et personnalisées. Nous allons également apprendre à utiliser BoundaryNorm pour fournir des limites pour les couleurs.

Conseils sur la machine virtuelle

Une fois le démarrage de la machine virtuelle terminé, cliquez sur le coin supérieur gauche pour basculer vers l'onglet Carnet de notes pour accéder au carnet Jupyter pour pratiquer.

Parfois, vous devrez peut-être attendre quelques secondes pour que le carnet Jupyter ait fini de charger. La validation des opérations ne peut pas être automatisée en raison des limitations du carnet Jupyter.

Si vous rencontrez des problèmes pendant l'apprentissage, n'hésitez pas à demander à Labby. Donnez votre feedback après la session, et nous résoudrons rapidement le problème pour vous.

Lognorm

Nous allons créer une bosse basse avec une pointe sortant du sommet, qui doit avoir l'axe z/couleur en échelle logarithmique, de manière à ce que nous voyions à la fois la bosse et la pointe.

N = 100
X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]

Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X * 10)**2 - (Y * 10)**2)
Z = Z1 + 50 * Z2

fig, ax = plt.subplots(2, 1)

pcm = ax[0].pcolor(X, Y, Z,
                   norm=colors.LogNorm(vmin=Z.min(), vmax=Z.max()),
                   cmap='PuBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[0], extend='max')

pcm = ax[1].pcolor(X, Y, Z, cmap='PuBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[1], extend='max')

PowerNorm

Nous allons créer une tendance de loi de puissance en X qui obscurcit partiellement une onde sinusoïdale rectifiée en Y. Nous allons ensuite éliminer la loi de puissance en utilisant une PowerNorm.

X, Y = np.mgrid[0:3:complex(0, N), 0:2:complex(0, N)]
Z1 = (1 + np.sin(Y * 10.)) * X**2

fig, ax = plt.subplots(2, 1)

pcm = ax[0].pcolormesh(X, Y, Z1, norm=colors.PowerNorm(gamma=1. / 2.),
                       cmap='PuBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[0], extend='max')

pcm = ax[1].pcolormesh(X, Y, Z1, cmap='PuBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[1], extend='max')

SymLogNorm

Nous allons créer deux bosse, l'une négative et l'autre positive, avec la bosse positive ayant cinq fois l'amplitude de la bosse négative. Linéairement, nous ne pouvons pas voir de détails dans la bosse négative. Nous allons échelle logarithmique les données positives et négatives séparément en utilisant une SymLogNorm.

X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]
Z = 5 * np.exp(-X**2 - Y**2)

fig, ax = plt.subplots(2, 1)

pcm = ax[0].pcolormesh(X, Y, Z,
                       norm=colors.SymLogNorm(linthresh=0.03, linscale=0.03,
                                              vmin=-1.0, vmax=1.0, base=10),
                       cmap='RdBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[0], extend='both')

pcm = ax[1].pcolormesh(X, Y, Z, cmap='RdBu_r', vmin=-np.max(Z),
                       shading='nearest')
fig.colorbar(pcm, ax=ax[1], extend='both')

Custom Norm

Nous allons créer un exemple avec une normalisation personnalisée. Cet exemple utilise l'exemple précédent et normalise les données négatives différemment des données positives.

X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2

class MidpointNormalize(colors.Normalize):
    def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False):
        self.midpoint = midpoint
        super().__init__(vmin, vmax, clip)

    def __call__(self, value, clip=None):
        x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1]
        return np.ma.masked_array(np.interp(value, x, y))

fig, ax = plt.subplots(2, 1)

pcm = ax[0].pcolormesh(X, Y, Z,
                       norm=MidpointNormalize(midpoint=0.),
                       cmap='RdBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[0], extend='both')

pcm = ax[1].pcolormesh(X, Y, Z, cmap='RdBu_r', vmin=-np.max(Z),
                       shading='nearest')
fig.colorbar(pcm, ax=ax[1], extend='both')

BoundaryNorm

Nous allons fournir des limites pour les couleurs en utilisant BoundaryNorm.

fig, ax = plt.subplots(3, 1, figsize=(8, 8))
ax = ax.flatten()
bounds = np.linspace(-1, 1, 10)
norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256)
pcm = ax[0].pcolormesh(X, Y, Z,
                       norm=norm,
                       cmap='RdBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[0], extend='both', orientation='vertical')

bounds = np.array([-0.25, -0.125, 0, 0.5, 1])
norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256)
pcm = ax[1].pcolormesh(X, Y, Z, norm=norm, cmap='RdBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[1], extend='both', orientation='vertical')

pcm = ax[2].pcolormesh(X, Y, Z, cmap='RdBu_r', vmin=-np.max(Z1),
                       shading='nearest')
fig.colorbar(pcm, ax=ax[2], extend='both', orientation='vertical')

plt.show()

Summary

Dans ce laboratoire, nous avons appris à utiliser Matplotlib pour projeter des cartes de couleurs sur des données de manière non linéaire en utilisant diverses normalisations telles que LogNorm, PowerNorm, SymLogNorm et des normalisations personnalisées. Nous avons également appris à utiliser BoundaryNorm pour fournir des limites pour les couleurs.