Création de graphiques en pseudo-couleurs avec Matplotlib Tripcolor

PythonPythonBeginner
Pratiquer maintenant

This tutorial is from open-source community. Access the source code

💡 Ce tutoriel est traduit par l'IA à partir de la version anglaise. Pour voir la version originale, vous pouvez cliquer ici

Introduction

Ce tutoriel vous guidera tout au long de la création de graphes en pseudo-couleurs de maillages triangulaires non structurés à l'aide de la fonction tripcolor() de Matplotlib pour Python.

Conseils sur la machine virtuelle

Une fois le démarrage de la machine virtuelle terminé, cliquez dans le coin supérieur gauche pour basculer vers l'onglet Carnet d'étude pour accéder au carnet Jupyter pour pratiquer.

Parfois, vous devrez peut-être attendre quelques secondes pour que le carnet Jupyter ait fini de charger. La validation des opérations ne peut pas être automatisée en raison des limitations du carnet Jupyter.

Si vous rencontrez des problèmes pendant l'apprentissage, n'hésitez pas à demander à Labby. Donnez votre feedback après la session, et nous résoudrons rapidement le problème pour vous.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL matplotlib(("Matplotlib")) -.-> matplotlib/BasicConceptsGroup(["Basic Concepts"]) python(("Python")) -.-> python/BasicConceptsGroup(["Basic Concepts"]) python(("Python")) -.-> python/DataStructuresGroup(["Data Structures"]) python(("Python")) -.-> python/ModulesandPackagesGroup(["Modules and Packages"]) python(("Python")) -.-> python/DataScienceandMachineLearningGroup(["Data Science and Machine Learning"]) matplotlib/BasicConceptsGroup -.-> matplotlib/importing_matplotlib("Importing Matplotlib") matplotlib/BasicConceptsGroup -.-> matplotlib/figures_axes("Understanding Figures and Axes") python/BasicConceptsGroup -.-> python/booleans("Booleans") python/BasicConceptsGroup -.-> python/comments("Comments") python/DataStructuresGroup -.-> python/lists("Lists") python/DataStructuresGroup -.-> python/tuples("Tuples") python/ModulesandPackagesGroup -.-> python/importing_modules("Importing Modules") python/DataScienceandMachineLearningGroup -.-> python/numerical_computing("Numerical Computing") python/DataScienceandMachineLearningGroup -.-> python/data_visualization("Data Visualization") subgraph Lab Skills matplotlib/importing_matplotlib -.-> lab-49010{{"Création de graphiques en pseudo-couleurs avec Matplotlib Tripcolor"}} matplotlib/figures_axes -.-> lab-49010{{"Création de graphiques en pseudo-couleurs avec Matplotlib Tripcolor"}} python/booleans -.-> lab-49010{{"Création de graphiques en pseudo-couleurs avec Matplotlib Tripcolor"}} python/comments -.-> lab-49010{{"Création de graphiques en pseudo-couleurs avec Matplotlib Tripcolor"}} python/lists -.-> lab-49010{{"Création de graphiques en pseudo-couleurs avec Matplotlib Tripcolor"}} python/tuples -.-> lab-49010{{"Création de graphiques en pseudo-couleurs avec Matplotlib Tripcolor"}} python/importing_modules -.-> lab-49010{{"Création de graphiques en pseudo-couleurs avec Matplotlib Tripcolor"}} python/numerical_computing -.-> lab-49010{{"Création de graphiques en pseudo-couleurs avec Matplotlib Tripcolor"}} python/data_visualization -.-> lab-49010{{"Création de graphiques en pseudo-couleurs avec Matplotlib Tripcolor"}} end

Importation des bibliothèques

Tout d'abord, nous devons importer les bibliothèques nécessaires pour ce tutoriel.

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.tri as tri

Création d'une triangulation de Delaunay

Nous allons créer une triangulation de Delaunay des points. Tout d'abord, nous allons créer les coordonnées x et y des points à l'aide de NumPy.

n_angles = 36
n_radii = 8
min_radius = 0.25
radii = np.linspace(min_radius, 0.95, n_radii)
angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
angles[:, 1::2] += np.pi / n_angles
x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()

Ensuite, nous allons créer les coordonnées z des points.

z = (np.cos(radii) * np.cos(3 * angles)).flatten()

Ensuite, nous allons créer l'objet Triangulation à l'aide de la fonction Triangulation() de matplotlib.tri. Étant donné que nous ne spécifions pas les triangles, la triangulation de Delaunay sera créée automatiquement.

triang = tri.Triangulation(x, y)

Enfin, nous allons masquer les triangles indésirables à l'aide de la fonction set_mask(). Dans cet exemple, nous définissons le masque pour exclure les triangles dont le rayon moyen est inférieur à min_radius.

triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1),
                         y[triang.triangles].mean(axis=1))
                < min_radius)

Création d'un graphique en pseudo-couleurs

Maintenant, nous allons créer un graphique en pseudo-couleurs à l'aide de la fonction tripcolor(). Nous allons créer deux graphiques en utilisant différentes méthodes d'ombrage.

## Graphique avec ombrage plat
fig1, ax1 = plt.subplots()
ax1.set_aspect('equal')
tpc = ax1.tripcolor(triang, z, shading='flat')
fig1.colorbar(tpc)
ax1.set_title('tripcolor de la triangulation de Delaunay, ombrage plat')

## Graphique avec ombrage Gouraud
fig2, ax2 = plt.subplots()
ax2.set_aspect('equal')
tpc = ax2.tripcolor(triang, z, shading='gouraud')
fig2.colorbar(tpc)
ax2.set_title('tripcolor de la triangulation de Delaunay, ombrage Gouraud')

Création d'une triangulation spécifiée par l'utilisateur

Nous pouvons également spécifier notre propre triangulation en utilisant les tableaux x, y et triangles. Dans cet exemple, nous allons créer une triangulation spécifiée par l'utilisateur à l'aide de la fonction tripcolor().

## Création des tableaux x, y et triangles
xy = np.asarray([
    [-0.101, 0.872], [-0.080, 0.883], [-0.069, 0.888], [-0.054, 0.890],
    [-0.045, 0.897], [-0.057, 0.895], [-0.073, 0.900], [-0.087, 0.898],
    [-0.090, 0.904], [-0.069, 0.907], [-0.069, 0.921], [-0.080, 0.919],
    [-0.073, 0.928], [-0.052, 0.930], [-0.048, 0.942], [-0.062, 0.949],
    [-0.054, 0.958], [-0.069, 0.954], [-0.087, 0.952], [-0.087, 0.959],
    [-0.080, 0.966], [-0.085, 0.973], [-0.087, 0.965], [-0.097, 0.965],
    [-0.097, 0.975], [-0.092, 0.984], [-0.101, 0.980], [-0.108, 0.980],
    [-0.104, 0.987], [-0.102, 0.993], [-0.115, 1.001], [-0.099, 0.996],
    [-0.101, 1.007], [-0.090, 1.010], [-0.087, 1.021], [-0.069, 1.021],
    [-0.052, 1.022], [-0.052, 1.017], [-0.069, 1.010], [-0.064, 1.005],
    [-0.048, 1.005], [-0.031, 1.005], [-0.031, 0.996], [-0.040, 0.987],
    [-0.045, 0.980], [-0.052, 0.975], [-0.040, 0.973], [-0.026, 0.968],
    [-0.020, 0.954], [-0.006, 0.947], [ 0.003, 0.935], [ 0.006, 0.926],
    [ 0.005, 0.921], [ 0.022, 0.923], [ 0.033, 0.912], [ 0.029, 0.905],
    [ 0.017, 0.900], [ 0.012, 0.895], [ 0.027, 0.893], [ 0.019, 0.886],
    [ 0.001, 0.883], [-0.012, 0.884], [-0.029, 0.883], [-0.038, 0.879],
    [-0.057, 0.881], [-0.062, 0.876], [-0.078, 0.876], [-0.087, 0.872],
    [-0.030, 0.907], [-0.007, 0.905], [-0.057, 0.916], [-0.025, 0.933],
    [-0.077, 0.990], [-0.059, 0.993]])
x, y = np.rad2deg(xy).T
triangles = np.asarray([
    [67, 66,  1], [65,  2, 66], [ 1, 66,  2], [64,  2, 65], [63,  3, 64],
    [60, 59, 57], [ 2, 64,  3], [ 3, 63,  4], [ 0, 67,  1], [62,  4, 63],
    [57, 59, 56], [59, 58, 56], [61, 60, 69], [57, 69, 60], [ 4, 62, 68],
    [ 6,  5,  9], [61, 68, 62], [69, 68, 61], [ 9,  5, 70], [ 6,  8,  7],
    [ 4, 70,  5], [ 8,  6,  9], [56, 69, 57], [69, 56, 52], [70, 10,  9],
    [54, 53, 55], [56, 55, 53], [68, 70,  4], [52, 56, 53], [11, 10, 12],
    [69, 71, 68], [68, 13, 70], [10, 70, 13], [51, 50, 52], [13, 68, 71],
    [52, 71, 69], [12, 10, 13], [71, 52, 50], [71, 14, 13], [50, 49, 71],
    [49, 48, 71], [14, 16, 15], [14, 71, 48], [17, 19, 18], [17, 20, 19],
    [48, 16, 14], [48, 47, 16], [47, 46, 16], [16, 46, 45], [23, 22, 24],
    [21, 24, 22], [17, 16, 45], [20, 17, 45], [21, 25, 24], [27, 26, 28],
    [20, 72, 21], [25, 21, 72], [45, 72, 20], [25, 28, 26], [44, 73, 45],
    [72, 45, 73], [28, 25, 29], [29, 25, 31], [43, 73, 44], [73, 43, 40],
    [72, 73, 39], [72, 31, 25], [42, 40, 43], [31, 30, 29], [39, 73, 40],
    [42, 41, 40], [72, 33, 31], [32, 31, 33], [39, 38, 72], [33, 72, 38],
    [33, 38, 34], [37, 35, 38], [34, 38, 35], [35, 37, 36]])

Ensuite, nous allons créer les coordonnées z des faces à l'aide de la fonction mean().

xmid = x[triangles].mean(axis=1)
ymid = y[triangles].mean(axis=1)
x0 = -5
y0 = 52
zfaces = np.exp(-0.01 * ((xmid - x0) * (xmid - x0) +
                         (ymid - y0) * (ymid - y0)))

Enfin, nous allons créer le graphique en pseudo-couleurs à l'aide de la fonction tripcolor() et en spécifiant les valeurs de x, y, triangles, facecolors et edgecolors.

fig3, ax3 = plt.subplots()
ax3.set_aspect('equal')
tpc = ax3.tripcolor(x, y, triangles, facecolors=zfaces, edgecolors='k')
fig3.colorbar(tpc)
ax3.set_title('tripcolor de la triangulation spécifiée par l\'utilisateur')
ax3.set_xlabel('Longitude (degrés)')
ax3.set_ylabel('Latitude (degrés)')

Tracer les résultats

Enfin, nous allons utiliser la fonction show() pour afficher les graphiques.

plt.show()

Sommaire

Dans ce tutoriel, nous avons appris à créer des graphiques en pseudo-couleurs de maillages triangulaires non structurés à l'aide de la fonction tripcolor() de Matplotlib en Python. Nous avons créé une triangulation de Delaunay et une triangulation spécifiée par l'utilisateur, et avons tracé les résultats en utilisant différentes méthodes d'ombrage.