Création et tracé de maillages triangulaires

PythonPythonBeginner
Pratiquer maintenant

This tutorial is from open-source community. Access the source code

💡 Ce tutoriel est traduit par l'IA à partir de la version anglaise. Pour voir la version originale, vous pouvez cliquer ici

Introduction

Dans ce laboratoire, nous allons apprendre à créer et à tracer des maillages triangulaires non structurés en Python en utilisant la bibliothèque Matplotlib. Nous commencerons par créer une triangulation de Delaunay d'un ensemble de points puis tracer la triangulation. Ensuite, nous spécifierons notre propre triangulation en fournissant les indices des trois points qui composent chaque triangle. Enfin, nous tracerons la triangulation spécifiée par l'utilisateur.

Conseils sur la machine virtuelle

Une fois le démarrage de la machine virtuelle terminé, cliquez dans le coin supérieur gauche pour basculer vers l'onglet Carnet de notes pour accéder au carnet Jupyter pour pratiquer.

Parfois, vous devrez peut-être attendre quelques secondes pour que le carnet Jupyter ait fini de charger. La validation des opérations ne peut pas être automatisée en raison des limitations du carnet Jupyter.

Si vous rencontrez des problèmes pendant l'apprentissage, n'hésitez pas à demander à Labby. Donnez votre feedback après la session et nous réglerons rapidement le problème pour vous.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL matplotlib(("Matplotlib")) -.-> matplotlib/BasicConceptsGroup(["Basic Concepts"]) python(("Python")) -.-> python/BasicConceptsGroup(["Basic Concepts"]) python(("Python")) -.-> python/DataStructuresGroup(["Data Structures"]) python(("Python")) -.-> python/ModulesandPackagesGroup(["Modules and Packages"]) python(("Python")) -.-> python/DataScienceandMachineLearningGroup(["Data Science and Machine Learning"]) matplotlib/BasicConceptsGroup -.-> matplotlib/importing_matplotlib("Importing Matplotlib") matplotlib/BasicConceptsGroup -.-> matplotlib/figures_axes("Understanding Figures and Axes") python/BasicConceptsGroup -.-> python/booleans("Booleans") python/DataStructuresGroup -.-> python/lists("Lists") python/DataStructuresGroup -.-> python/tuples("Tuples") python/ModulesandPackagesGroup -.-> python/importing_modules("Importing Modules") python/DataScienceandMachineLearningGroup -.-> python/numerical_computing("Numerical Computing") python/DataScienceandMachineLearningGroup -.-> python/data_visualization("Data Visualization") subgraph Lab Skills matplotlib/importing_matplotlib -.-> lab-49011{{"Création et tracé de maillages triangulaires"}} matplotlib/figures_axes -.-> lab-49011{{"Création et tracé de maillages triangulaires"}} python/booleans -.-> lab-49011{{"Création et tracé de maillages triangulaires"}} python/lists -.-> lab-49011{{"Création et tracé de maillages triangulaires"}} python/tuples -.-> lab-49011{{"Création et tracé de maillages triangulaires"}} python/importing_modules -.-> lab-49011{{"Création et tracé de maillages triangulaires"}} python/numerical_computing -.-> lab-49011{{"Création et tracé de maillages triangulaires"}} python/data_visualization -.-> lab-49011{{"Création et tracé de maillages triangulaires"}} end

Importation des bibliothèques

Nous allons commencer par importer les bibliothèques requises : Matplotlib, NumPy et Matplotlib.tri.

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.tri as tri

Créer une triangulation de Delaunay

Nous allons créer une triangulation de Delaunay sans spécifier les triangles en fournissant les coordonnées x et y des points.

n_angles = 36
n_radii = 8
min_radius = 0.25
radii = np.linspace(min_radius, 0.95, n_radii)
angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
angles[:, 1::2] += np.pi / n_angles
x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()
triang = tri.Triangulation(x, y)

Masquer les triangles indésirables

Nous allons masquer les triangles indésirables en calculant la moyenne des coordonnées x et y des sommets de chaque triangle et en la comparant au rayon minimum.

triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1),
                         y[triang.triangles].mean(axis=1))
                < min_radius)

Tracer la triangulation de Delaunay

Nous allons tracer la triangulation à l'aide de la fonction triplot.

fig1, ax1 = plt.subplots()
ax1.set_aspect('equal')
ax1.triplot(triang, 'bo-', lw=1)
ax1.set_title('Triplot of Delaunay Triangulation')

Créer une triangulation spécifiée par l'utilisateur

Nous allons créer une triangulation spécifiée par l'utilisateur en fournissant les coordonnées x et y des sommets de chaque triangle.

xy = np.asarray([
    [-0.101, 0.872], [-0.080, 0.883], [-0.069, 0.888], [-0.054, 0.890],
    [-0.045, 0.897], [-0.057, 0.895], [-0.073, 0.900], [-0.087, 0.898],
    [-0.090, 0.904], [-0.069, 0.907], [-0.069, 0.921], [-0.080, 0.919],
    [-0.073, 0.928], [-0.052, 0.930], [-0.048, 0.942], [-0.062, 0.949],
    [-0.054, 0.958], [-0.069, 0.954], [-0.087, 0.952], [-0.087, 0.959],
    [-0.080, 0.966], [-0.085, 0.973], [-0.087, 0.965], [-0.097, 0.965],
    [-0.097, 0.975], [-0.092, 0.984], [-0.101, 0.980], [-0.108, 0.980],
    [-0.104, 0.987], [-0.102, 0.993], [-0.115, 1.001], [-0.099, 0.996],
    [-0.101, 1.007], [-0.090, 1.010], [-0.087, 1.021], [-0.069, 1.021],
    [-0.052, 1.022], [-0.052, 1.017], [-0.069, 1.010], [-0.064, 1.005],
    [-0.048, 1.005], [-0.031, 1.005], [-0.031, 0.996], [-0.040, 0.987],
    [-0.045, 0.980], [-0.052, 0.975], [-0.040, 0.973], [-0.026, 0.968],
    [-0.020, 0.954], [-0.006, 0.947], [ 0.003, 0.935], [ 0.006, 0.926],
    [ 0.005, 0.921], [ 0.022, 0.923], [ 0.033, 0.912], [ 0.029, 0.905],
    [ 0.017, 0.900], [ 0.012, 0.895], [ 0.027, 0.893], [ 0.019, 0.886],
    [ 0.001, 0.883], [-0.012, 0.884], [-0.029, 0.883], [-0.038, 0.879],
    [-0.057, 0.881], [-0.062, 0.876], [-0.078, 0.876], [-0.087, 0.872],
    [-0.030, 0.907], [-0.007, 0.905], [-0.057, 0.916], [-0.025, 0.933],
    [-0.077, 0.990], [-0.059, 0.993]])
x = np.degrees(xy[:, 0])
y = np.degrees(xy[:, 1])
triangles = np.asarray([
    [67, 66,  1], [65,  2, 66], [ 1, 66,  2], [64,  2, 65], [63,  3, 64],
    [60, 59, 57], [ 2, 64,  3], [ 3, 63,  4], [ 0, 67,  1], [62,  4, 63],
    [57, 59, 56], [59, 58, 56], [61, 60, 69], [57, 69, 60], [ 4, 62, 68],
    [ 6,  5,  9], [61, 68, 62], [69, 68, 61], [ 9,  5, 70], [ 6,  8,  7],
    [ 4, 70,  5], [ 8,  6,  9], [56, 69, 57], [69, 56, 52], [70, 10,  9],
    [54, 53, 55], [56, 55, 53], [68, 70,  4], [52, 56, 53], [11, 10, 12],
    [69, 71, 68], [68, 13, 70], [10, 70, 13], [51, 50, 52], [13, 68, 71],
    [52, 71, 69], [12, 10, 13], [71, 52, 50], [71, 14, 13], [50, 49, 71],
    [49, 48, 71], [14, 16, 15], [14, 71, 48], [17, 19, 18], [17, 20, 19],
    [48, 16, 14], [48, 47, 16], [47, 46, 16], [16, 46, 45], [23, 22, 24],
    [21, 24, 22], [17, 16, 45], [20, 17, 45], [21, 25, 24], [27, 26, 28],
    [20, 72, 21], [25, 21, 72], [45, 72, 20], [25, 28, 26], [44, 73, 45],
    [72, 45, 73], [28, 25, 29], [29, 25, 31], [43, 73, 44], [73, 43, 40],
    [72, 73, 39], [72, 31, 25], [42, 40, 43], [31, 30, 29], [39, 73, 40],
    [42, 41, 40], [72, 33, 31], [32, 31, 33], [39, 38, 72], [33, 72, 38],
    [33, 38, 34], [37, 35, 38], [34, 38, 35], [35, 37, 36]])

Tracer la triangulation spécifiée par l'utilisateur

Nous allons tracer la triangulation spécifiée par l'utilisateur à l'aide de la fonction triplot.

fig2, ax2 = plt.subplots()
ax2.set_aspect('equal')
ax2.triplot(x, y, triangles, 'go-', lw=1.0)
ax2.set_title('Triplot of User-Specified Triangulation')
ax2.set_xlabel('Longitude (degrees)')
ax2.set_ylabel('Latitude (degrees)')

Sommaire

Dans ce laboratoire, nous avons appris à créer et à tracer des maillages triangulaires non structurés en Python à l'aide de la bibliothèque Matplotlib. Nous avons créé une triangulation de Delaunay et l'avons tracée à l'aide de la fonction triplot. Nous avons également créé une triangulation spécifiée par l'utilisateur et l'avons tracée à l'aide de la fonction triplot.