Représentation graphique en ligne de niveau de maillages triangulaires non structurés

PythonPythonBeginner
Pratiquer maintenant

This tutorial is from open-source community. Access the source code

💡 Ce tutoriel est traduit par l'IA à partir de la version anglaise. Pour voir la version originale, vous pouvez cliquer ici

Introduction

Les graphes de niveau sont un moyen de représenter des données tridimensionnelles sur un plan bidimensionnel. Dans ce tutoriel, nous allons apprendre à créer des graphes de niveau de maillages triangulaires non structurés à l'aide de matplotlib et numpy.

Conseils sur la machine virtuelle

Une fois le démarrage de la machine virtuelle terminé, cliquez sur le coin supérieur gauche pour basculer vers l'onglet Carnet de notes pour accéder au carnet Jupyter pour pratiquer.

Parfois, vous devrez peut-être attendre quelques secondes pour que le carnet Jupyter ait fini de charger. La validation des opérations ne peut pas être automatisée en raison des limitations du carnet Jupyter.

Si vous rencontrez des problèmes pendant l'apprentissage, n'hésitez pas à demander à Labby. Donnez votre feedback après la session, et nous résoudrons rapidement le problème pour vous.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL python(("Python")) -.-> python/BasicConceptsGroup(["Basic Concepts"]) python(("Python")) -.-> python/DataStructuresGroup(["Data Structures"]) matplotlib(("Matplotlib")) -.-> matplotlib/PlotCustomizationGroup(["Plot Customization"]) python/BasicConceptsGroup -.-> python/booleans("Booleans") python/DataStructuresGroup -.-> python/lists("Lists") python/DataStructuresGroup -.-> python/tuples("Tuples") python/DataStructuresGroup -.-> python/dictionaries("Dictionaries") matplotlib/PlotCustomizationGroup -.-> matplotlib/line_styles_colors("Customizing Line Styles and Colors") matplotlib/PlotCustomizationGroup -.-> matplotlib/legend_config("Legend Configuration") subgraph Lab Skills python/booleans -.-> lab-49002{{"Représentation graphique en ligne de niveau de maillages triangulaires non structurés"}} python/lists -.-> lab-49002{{"Représentation graphique en ligne de niveau de maillages triangulaires non structurés"}} python/tuples -.-> lab-49002{{"Représentation graphique en ligne de niveau de maillages triangulaires non structurés"}} python/dictionaries -.-> lab-49002{{"Représentation graphique en ligne de niveau de maillages triangulaires non structurés"}} matplotlib/line_styles_colors -.-> lab-49002{{"Représentation graphique en ligne de niveau de maillages triangulaires non structurés"}} matplotlib/legend_config -.-> lab-49002{{"Représentation graphique en ligne de niveau de maillages triangulaires non structurés"}} end

Créer les données

Tout d'abord, nous allons créer les coordonnées x et y des points, ainsi que les valeurs de z. Nous utiliserons la fonction np.linspace pour créer des tableaux de valeurs régulièrement espacées.

n_angles = 48
n_radii = 8
min_radius = 0.25
radii = np.linspace(min_radius, 0.95, n_radii)

angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
angles[:, 1::2] += np.pi / n_angles

x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()
z = (np.cos(radii) * np.cos(3 * angles)).flatten()

Créer la triangulation

Nous allons créer la triangulation à l'aide de matplotlib.tri.Triangulation. Nous n'avons pas besoin de spécifier les triangles, donc la triangulation de Delaunay des points sera créée automatiquement.

triang = tri.Triangulation(x, y)

Masquer les triangles indésirables

Nous allons utiliser la méthode set_mask pour masquer les triangles indésirables.

triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1),
                         y[triang.triangles].mean(axis=1))
                < min_radius)

Créer un graphique en couleur de surface

Nous allons créer un graphique en couleur de surface à l'aide de ax.tricontourf et fig.colorbar.

fig1, ax1 = plt.subplots()
ax1.set_aspect('equal')
tcf = ax1.tricontourf(triang, z)
fig1.colorbar(tcf)
ax1.tricontour(triang, z, colors='k')
ax1.set_title('Contour plot of Delaunay triangulation')

Créer un graphique en ligne de niveau hachuré

Nous pouvons créer un graphique en ligne de niveau hachuré en spécifiant le paramètre hatches dans ax.tricontourf. Nous pouvons également utiliser une autre carte de couleurs en spécifiant le paramètre cmap.

fig2, ax2 = plt.subplots()
ax2.set_aspect("equal")
tcf = ax2.tricontourf(
    triang,
    z,
    hatches=["*", "-", "/", "//", "\\", None],
    cmap="cividis"
)
fig2.colorbar(tcf)
ax2.tricontour(triang, z, linestyles="solid", colors="k", linewidths=2.0)
ax2.set_title("Hatched Contour plot of Delaunay triangulation")

Générer des motifs de hachures étiquetés sans couleur

Nous pouvons générer des motifs de hachures étiquetés sans couleur en spécifiant le paramètre colors comme "none" dans ax.tricontourf. Nous pouvons également créer une légende pour l'ensemble de lignes de niveau à l'aide de ContourSet.legend_elements.

fig3, ax3 = plt.subplots()
n_levels = 7
tcf = ax3.tricontourf(
    triang,
    z,
    n_levels,
    colors="none",
    hatches=[".", "/", "\\", None, "\\\\", "*"],
)
ax3.tricontour(triang, z, n_levels, colors="black", linestyles="-")

artists, labels = tcf.legend_elements(str_format="{:2.1f}".format)
ax3.legend(artists, labels, handleheight=2, framealpha=1)

Créer une triangulation spécifiée par l'utilisateur

Nous pouvons créer une triangulation spécifiée par l'utilisateur à l'aide des tableaux x, y et triangles. Nous pouvons ensuite créer un graphique en ligne de niveau à l'aide de ax.tricontourf.

xy = np.asarray([
    [-0.101, 0.872], [-0.080, 0.883], [-0.069, 0.888], [-0.054, 0.890],
    [-0.045, 0.897], [-0.057, 0.895], [-0.073, 0.900], [-0.087, 0.898],
    [-0.090, 0.904], [-0.069, 0.907], [-0.069, 0.921], [-0.080, 0.919],
    [-0.073, 0.928], [-0.052, 0.930], [-0.048, 0.942], [-0.062, 0.949],
    [-0.054, 0.958], [-0.069, 0.954], [-0.087, 0.952], [-0.087, 0.959],
    [-0.080, 0.966], [-0.085, 0.973], [-0.087, 0.965], [-0.097, 0.965],
    [-0.097, 0.975], [-0.092, 0.984], [-0.101, 0.980], [-0.108, 0.980],
    [-0.104, 0.987], [-0.102, 0.993], [-0.115, 1.001], [-0.099, 0.996],
    [-0.101, 1.007], [-0.090, 1.010], [-0.087, 1.021], [-0.069, 1.021],
    [-0.052, 1.022], [-0.052, 1.017], [-0.069, 1.010], [-0.064, 1.005],
    [-0.048, 1.005], [-0.031, 1.005], [-0.031, 0.996], [-0.040, 0.987],
    [-0.045, 0.980], [-0.052, 0.975], [-0.040, 0.973], [-0.026, 0.968],
    [-0.020, 0.954], [-0.006, 0.947], [ 0.003, 0.935], [ 0.006, 0.926],
    [ 0.005, 0.921], [ 0.022, 0.923], [ 0.033, 0.912], [ 0.029, 0.905],
    [ 0.017, 0.900], [ 0.012, 0.895], [ 0.027, 0.893], [ 0.019, 0.886],
    [ 0.001, 0.883], [-0.012, 0.884], [-0.029, 0.883], [-0.038, 0.879],
    [-0.057, 0.881], [-0.062, 0.876], [-0.078, 0.876], [-0.087, 0.872],
    [-0.030, 0.907], [-0.007, 0.905], [-0.057, 0.916], [-0.025, 0.933],
    [-0.077, 0.990], [-0.059, 0.993]])
x = np.degrees(xy[:, 0])
y = np.degrees(xy[:, 1])
x0 = -5
y0 = 52
z = np.exp(-0.01 * ((x - x0) ** 2 + (y - y0) ** 2))

triangles = np.asarray([
    [67, 66,  1], [65,  2, 66], [ 1, 66,  2], [64,  2, 65], [63,  3, 64],
    [60, 59, 57], [ 2, 64,  3], [ 3, 63,  4], [ 0, 67,  1], [62,  4, 63],
    [57, 59, 56], [59, 58, 56], [61, 60, 69], [57, 69, 60], [ 4, 62, 68],
    [ 6,  5,  9], [61, 68, 62], [69, 68, 61], [ 9,  5, 70], [ 6,  8,  7],
    [ 4, 70,  5], [ 8,  6,  9], [56, 69, 57], [69, 56, 52], [70, 10,  9],
    [54, 53, 55], [56, 55, 53], [68, 70,  4], [52, 56, 53], [11, 10, 12],
    [69, 71, 68], [68, 13, 70], [10, 70, 13], [51, 50, 52], [13, 68, 71],
    [52, 71, 69], [12, 10, 13], [71, 52, 50], [71, 14, 13], [50, 49, 71],
    [49, 48, 71], [14, 16, 15], [14, 71, 48], [17, 19, 18], [17, 20, 19],
    [48, 16, 14], [48, 47, 16], [47, 46, 16], [16, 46, 45], [23, 22, 24],
    [21, 24, 22], [17, 16, 45], [20, 17, 45], [21, 25, 24], [27, 26, 28],
    [20, 72, 21], [25, 21, 72], [45, 72, 20], [25, 28, 26], [44, 73, 45],
    [72, 45, 73], [28, 25, 29], [29, 25, 31], [43, 73, 44], [73, 43, 40],
    [72, 73, 39], [72, 31, 25], [42, 40, 43], [31, 30, 29], [39, 73, 40],
    [42, 41, 40], [72, 33, 31], [32, 31, 33], [39, 38, 72], [33, 72, 38],
    [33, 38, 34], [37, 35, 38], [34, 38, 35], [35, 37, 36]])

fig4, ax4 = plt.subplots()
ax4.set_aspect('equal')
tcf = ax4.tricontourf(x, y, triangles, z)
fig4.colorbar(tcf)
ax4.set_title('Contour plot of user-specified triangulation')
ax4.set_xlabel('Longitude (degrees)')
ax4.set_ylabel('Latitude (degrees)')```

Afficher les graphiques

Enfin, nous allons afficher tous les graphiques à l'aide de plt.show().

plt.show()

Sommaire

Dans ce laboratoire, nous avons appris à créer des graphiques en ligne de niveau de maillages triangulaires non structurés à l'aide de matplotlib et de numpy. Nous avons créé une triangulation de Delaunay des points, avons masqué les triangles indésirables, avons créé un graphique en pseudo-couleurs, un graphique en ligne de niveau hachuré et un graphique en ligne de niveau de triangulation spécifiée par l'utilisateur. Nous avons également appris à ajouter une barre de couleur et une légende aux graphiques.