Crear gráficos de pseudocolores con Matplotlib Tripcolor

PythonPythonBeginner
Practicar Ahora

This tutorial is from open-source community. Access the source code

💡 Este tutorial está traducido por IA desde la versión en inglés. Para ver la versión original, puedes hacer clic aquí

Introducción

Este tutorial lo guiará a través de la creación de gráficos de pseudocolores de mallas triangulares no estructuradas utilizando la función tripcolor() de Matplotlib de Python.

Consejos sobre la VM

Una vez finalizada la inicialización de la VM, haga clic en la esquina superior izquierda para cambiar a la pestaña Cuaderno y acceder a Jupyter Notebook para practicar.

A veces, es posible que tenga que esperar unos segundos a que Jupyter Notebook termine de cargarse. La validación de operaciones no puede automatizarse debido a las limitaciones de Jupyter Notebook.

Si tiene problemas durante el aprendizaje, no dude en preguntar a Labby. Deje sus comentarios después de la sesión y lo resolveremos rápidamente para usted.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL python(("Python")) -.-> python/ModulesandPackagesGroup(["Modules and Packages"]) python(("Python")) -.-> python/DataScienceandMachineLearningGroup(["Data Science and Machine Learning"]) matplotlib(("Matplotlib")) -.-> matplotlib/BasicConceptsGroup(["Basic Concepts"]) python(("Python")) -.-> python/BasicConceptsGroup(["Basic Concepts"]) python(("Python")) -.-> python/DataStructuresGroup(["Data Structures"]) matplotlib/BasicConceptsGroup -.-> matplotlib/importing_matplotlib("Importing Matplotlib") matplotlib/BasicConceptsGroup -.-> matplotlib/figures_axes("Understanding Figures and Axes") python/BasicConceptsGroup -.-> python/booleans("Booleans") python/BasicConceptsGroup -.-> python/comments("Comments") python/DataStructuresGroup -.-> python/lists("Lists") python/DataStructuresGroup -.-> python/tuples("Tuples") python/ModulesandPackagesGroup -.-> python/importing_modules("Importing Modules") python/DataScienceandMachineLearningGroup -.-> python/numerical_computing("Numerical Computing") python/DataScienceandMachineLearningGroup -.-> python/data_visualization("Data Visualization") subgraph Lab Skills matplotlib/importing_matplotlib -.-> lab-49010{{"Crear gráficos de pseudocolores con Matplotlib Tripcolor"}} matplotlib/figures_axes -.-> lab-49010{{"Crear gráficos de pseudocolores con Matplotlib Tripcolor"}} python/booleans -.-> lab-49010{{"Crear gráficos de pseudocolores con Matplotlib Tripcolor"}} python/comments -.-> lab-49010{{"Crear gráficos de pseudocolores con Matplotlib Tripcolor"}} python/lists -.-> lab-49010{{"Crear gráficos de pseudocolores con Matplotlib Tripcolor"}} python/tuples -.-> lab-49010{{"Crear gráficos de pseudocolores con Matplotlib Tripcolor"}} python/importing_modules -.-> lab-49010{{"Crear gráficos de pseudocolores con Matplotlib Tripcolor"}} python/numerical_computing -.-> lab-49010{{"Crear gráficos de pseudocolores con Matplotlib Tripcolor"}} python/data_visualization -.-> lab-49010{{"Crear gráficos de pseudocolores con Matplotlib Tripcolor"}} end

Importar bibliotecas

En primer lugar, necesitamos importar las bibliotecas necesarias para este tutorial.

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.tri as tri

Crear una triangulación de Delaunay

Vamos a crear una triangulación de Delaunay de los puntos. En primer lugar, crearemos las coordenadas x e y de los puntos utilizando NumPy.

n_angles = 36
n_radii = 8
min_radius = 0.25
radii = np.linspace(min_radius, 0.95, n_radii)
angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
angles[:, 1::2] += np.pi / n_angles
x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()

Luego, crearemos las coordenadas z de los puntos.

z = (np.cos(radii) * np.cos(3 * angles)).flatten()

A continuación, crearemos el objeto Triangulación utilizando la función Triangulation() de matplotlib.tri. Dado que no estamos especificando los triángulos, se creará automáticamente la triangulación de Delaunay.

triang = tri.Triangulation(x, y)

Finalmente, eliminaremos los triángulos no deseados utilizando la función set_mask(). En este ejemplo, estamos estableciendo la máscara para excluir los triángulos con un radio promedio menor que min_radius.

triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1),
                         y[triang.triangles].mean(axis=1))
                < min_radius)

Crear un gráfico de tripcolor

Ahora, crearemos un gráfico de tripcolor utilizando la función tripcolor(). Crearemos dos gráficos utilizando diferentes métodos de sombreado.

## Gráfico con sombreado plano
fig1, ax1 = plt.subplots()
ax1.set_aspect('equal')
tpc = ax1.tripcolor(triang, z, shading='flat')
fig1.colorbar(tpc)
ax1.set_title('tripcolor de la triangulación de Delaunay, sombreado plano')

## Gráfico con sombreado Gouraud
fig2, ax2 = plt.subplots()
ax2.set_aspect('equal')
tpc = ax2.tripcolor(triang, z, shading='gouraud')
fig2.colorbar(tpc)
ax2.set_title('tripcolor de la triangulación de Delaunay, sombreado Gouraud')

Crear una triangulación especificada por el usuario

También podemos especificar nuestra propia triangulación utilizando las matrices x, y y triangles. En este ejemplo, crearemos una triangulación especificada por el usuario utilizando la función tripcolor().

## Crear matrices x, y y triangles
xy = np.asarray([
    [-0.101, 0.872], [-0.080, 0.883], [-0.069, 0.888], [-0.054, 0.890],
    [-0.045, 0.897], [-0.057, 0.895], [-0.073, 0.900], [-0.087, 0.898],
    [-0.090, 0.904], [-0.069, 0.907], [-0.069, 0.921], [-0.080, 0.919],
    [-0.073, 0.928], [-0.052, 0.930], [-0.048, 0.942], [-0.062, 0.949],
    [-0.054, 0.958], [-0.069, 0.954], [-0.087, 0.952], [-0.087, 0.959],
    [-0.080, 0.966], [-0.085, 0.973], [-0.087, 0.965], [-0.097, 0.965],
    [-0.097, 0.975], [-0.092, 0.984], [-0.101, 0.980], [-0.108, 0.980],
    [-0.104, 0.987], [-0.102, 0.993], [-0.115, 1.001], [-0.099, 0.996],
    [-0.101, 1.007], [-0.090, 1.010], [-0.087, 1.021], [-0.069, 1.021],
    [-0.052, 1.022], [-0.052, 1.017], [-0.069, 1.010], [-0.064, 1.005],
    [-0.048, 1.005], [-0.031, 1.005], [-0.031, 0.996], [-0.040, 0.987],
    [-0.045, 0.980], [-0.052, 0.975], [-0.040, 0.973], [-0.026, 0.968],
    [-0.020, 0.954], [-0.006, 0.947], [ 0.003, 0.935], [ 0.006, 0.926],
    [ 0.005, 0.921], [ 0.022, 0.923], [ 0.033, 0.912], [ 0.029, 0.905],
    [ 0.017, 0.900], [ 0.012, 0.895], [ 0.027, 0.893], [ 0.019, 0.886],
    [ 0.001, 0.883], [-0.012, 0.884], [-0.029, 0.883], [-0.038, 0.879],
    [-0.057, 0.881], [-0.062, 0.876], [-0.078, 0.876], [-0.087, 0.872],
    [-0.030, 0.907], [-0.007, 0.905], [-0.057, 0.916], [-0.025, 0.933],
    [-0.077, 0.990], [-0.059, 0.993]])
x, y = np.rad2deg(xy).T
triangles = np.asarray([
    [67, 66,  1], [65,  2, 66], [ 1, 66,  2], [64,  2, 65], [63,  3, 64],
    [60, 59, 57], [ 2, 64,  3], [ 3, 63,  4], [ 0, 67,  1], [62,  4, 63],
    [57, 59, 56], [59, 58, 56], [61, 60, 69], [57, 69, 60], [ 4, 62, 68],
    [ 6,  5,  9], [61, 68, 62], [69, 68, 61], [ 9,  5, 70], [ 6,  8,  7],
    [ 4, 70,  5], [ 8,  6,  9], [56, 69, 57], [69, 56, 52], [70, 10,  9],
    [54, 53, 55], [56, 55, 53], [68, 70,  4], [52, 56, 53], [11, 10, 12],
    [69, 71, 68], [68, 13, 70], [10, 70, 13], [51, 50, 52], [13, 68, 71],
    [52, 71, 69], [12, 10, 13], [71, 52, 50], [71, 14, 13], [50, 49, 71],
    [49, 48, 71], [14, 16, 15], [14, 71, 48], [17, 19, 18], [17, 20, 19],
    [48, 16, 14], [48, 47, 16], [47, 46, 16], [16, 46, 45], [23, 22, 24],
    [21, 24, 22], [17, 16, 45], [20, 17, 45], [21, 25, 24], [27, 26, 28],
    [20, 72, 21], [25, 21, 72], [45, 72, 20], [25, 28, 26], [44, 73, 45],
    [72, 45, 73], [28, 25, 29], [29, 25, 31], [43, 73, 44], [73, 43, 40],
    [72, 73, 39], [72, 31, 25], [42, 40, 43], [31, 30, 29], [39, 73, 40],
    [42, 41, 40], [72, 33, 31], [32, 31, 33], [39, 38, 72], [33, 72, 38],
    [33, 38, 34], [37, 35, 38], [34, 38, 35], [35, 37, 36]])

Luego, crearemos las coordenadas z de las caras utilizando la función mean().

xmid = x[triangles].mean(axis=1)
ymid = y[triangles].mean(axis=1)
x0 = -5
y0 = 52
zfaces = np.exp(-0.01 * ((xmid - x0) * (xmid - x0) +
                         (ymid - y0) * (ymid - y0)))

Finalmente, crearemos el gráfico de tripcolor utilizando la función tripcolor() y especificando x, y, triangles, facecolors y edgecolors.

fig3, ax3 = plt.subplots()
ax3.set_aspect('equal')
tpc = ax3.tripcolor(x, y, triangles, facecolors=zfaces, edgecolors='k')
fig3.colorbar(tpc)
ax3.set_title('tripcolor de la triangulación especificada por el usuario')
ax3.set_xlabel('Longitud (grados)')
ax3.set_ylabel('Latitud (grados)')

Graficar los resultados

Finalmente, usaremos la función show() para mostrar los gráficos.

plt.show()

Resumen

En este tutorial, aprendimos cómo crear gráficos de pseudocolores de mallas triangulares no estructuradas utilizando la función tripcolor() de Matplotlib de Python. Creamos una triangulación de Delaunay y una triangulación especificada por el usuario, y graficamos los resultados utilizando diferentes métodos de sombreado.