Scikit-Learn Libsvm GUI

Machine LearningMachine LearningBeginner
Practicar Ahora

This tutorial is from open-source community. Access the source code

💡 Este tutorial está traducido por IA desde la versión en inglés. Para ver la versión original, puedes hacer clic aquí

Introducción

En este tutorial, aprenderá a usar la interfaz gráfica de usuario de Scikit-learn Libsvm, que es una interfaz gráfica simple para Libsvm destinada principalmente a fines didácticos. Puede crear puntos de datos con un clic y visualizar la región de decisión inducida por diferentes kernels y configuraciones de parámetros.

Consejos sobre la máquina virtual

Una vez finalizada la inicialización de la máquina virtual, haga clic en la esquina superior izquierda para cambiar a la pestaña Cuaderno y acceder a Jupyter Notebook para practicar.

A veces, es posible que tenga que esperar unos segundos a que Jupyter Notebook termine de cargarse. La validación de las operaciones no se puede automatizar debido a las limitaciones de Jupyter Notebook.

Si tiene problemas durante el aprendizaje, no dude en preguntar a Labby. Deje su retroalimentación después de la sesión y resolveremos el problema inmediatamente para usted.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL sklearn(("Sklearn")) -.-> sklearn/UtilitiesandDatasetsGroup(["Utilities and Datasets"]) ml(("Machine Learning")) -.-> ml/FrameworkandSoftwareGroup(["Framework and Software"]) sklearn/UtilitiesandDatasetsGroup -.-> sklearn/datasets("Datasets") ml/FrameworkandSoftwareGroup -.-> ml/sklearn("scikit-learn") subgraph Lab Skills sklearn/datasets -.-> lab-49333{{"Scikit-Learn Libsvm GUI"}} ml/sklearn -.-> lab-49333{{"Scikit-Learn Libsvm GUI"}} end

Instale los paquetes necesarios

Antes de comenzar, asegúrese de tener instalados los siguientes paquetes:

  • matplotlib
  • numpy
  • tkinter
  • scikit-learn

Puede instalar estos paquetes utilizando pip.

Importe los paquetes necesarios

El primer paso es importar los paquetes necesarios para el proyecto.

import matplotlib
matplotlib.use("TkAgg")
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg as NavigationToolbar2Tk
from matplotlib.figure import Figure
from matplotlib.contour import ContourSet
import sys
import numpy as np
import tkinter as Tk
from sklearn import svm
from sklearn.datasets import dump_svmlight_file

Cree la clase Model

En este paso, crearemos la clase Model que contendrá los datos. Implementa el observable en el patrón observador y notifica a los observadores registrados en caso de un evento de cambio.

class Model:
    def __init__(self):
        self.observers = []
        self.surface = None
        self.data = []
        self.cls = None
        self.surface_type = 0

    def changed(self, event):
        for observer in self.observers:
            observer.update(event, self)

    def add_observer(self, observer):
        self.observers.append(observer)

    def set_surface(self, surface):
        self.surface = surface

    def dump_svmlight_file(self, file):
        data = np.array(self.data)
        X = data[:, 0:2]
        y = data[:, 2]
        dump_svmlight_file(X, y, file)

Cree la clase Controlador

La clase Controlador se utiliza para controlar la clase Model. Contiene métodos para ajustar el modelo, agregar ejemplos, limpiar los datos y volver a ajustar el modelo.

class Controller:
    def __init__(self, model):
        self.model = model
        self.kernel = Tk.IntVar()
        self.surface_type = Tk.IntVar()
        self.fitted = False

    def fit(self):
        train = np.array(self.model.data)
        X = train[:, 0:2]
        y = train[:, 2]
        C = float(self.complexity.get())
        gamma = float(self.gamma.get())
        coef0 = float(self.coef0.get())
        degree = int(self.degree.get())
        kernel_map = {0: "lineal", 1: "rbf", 2: "polinomial"}
        if len(np.unique(y)) == 1:
            clf = svm.OneClassSVM(
                kernel=kernel_map[self.kernel.get()],
                gamma=gamma,
                coef0=coef0,
                degree=degree,
            )
            clf.fit(X)
        else:
            clf = svm.SVC(
                kernel=kernel_map[self.kernel.get()],
                C=C,
                gamma=gamma,
                coef0=coef0,
                degree=degree,
            )
            clf.fit(X, y)
        if hasattr(clf, "score"):
            print("Precisión:", clf.score(X, y) * 100)
        X1, X2, Z = self.decision_surface(clf)
        self.model.clf = clf
        self.model.set_surface((X1, X2, Z))
        self.model.surface_type = self.surface_type.get()
        self.fitted = True
        self.model.changed("superficie")

    def decision_surface(self, cls):
        delta = 1
        x = np.arange(x_min, x_max + delta, delta)
        y = np.arange(y_min, y_max + delta, delta)
        X1, X2 = np.meshgrid(x, y)
        Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()])
        Z = Z.reshape(X1.shape)
        return X1, X2, Z

    def clear_data(self):
        self.model.data = []
        self.fitted = False
        self.model.changed("limpiar")

    def add_example(self, x, y, label):
        self.model.data.append((x, y, label))
        self.model.changed("ejemplo_agregado")
        self.refit()

    def refit(self):
        if self.fitted:
            self.fit()

Cree la clase Vista

La clase Vista se utiliza para mostrar la interfaz gráfica de usuario (GUI) y manejar las interacciones del usuario.

class View:
    def __init__(self, root, controller):
        f = Figure()
        ax = f.add_subplot(111)
        ax.set_xticks([])
        ax.set_yticks([])
        ax.set_xlim((x_min, x_max))
        ax.set_ylim((y_min, y_max))
        canvas = FigureCanvasTkAgg(f, master=root)
        canvas.draw()
        canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
        canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
        canvas.mpl_connect("button_press_event", self.onclick)
        toolbar = NavigationToolbar2Tk(canvas, root)
        toolbar.update()
        self.controllbar = ControllBar(root, controller)
        self.f = f
        self.ax = ax
        self.canvas = canvas
        self.controller = controller
        self.contours = []
        self.c_labels = None
        self.plot_kernels()

    def plot_kernels(self):
        self.ax.text(-50, -60, "Lineal: $u^T v$")
        self.ax.text(-20, -60, r"RBF: $\exp (-\gamma \| u-v \|^2)$")
        self.ax.text(10, -60, r"Polinomial: $(\gamma \, u^T v + r)^d$")

    def onclick(self, event):
        if event.xdata and event.ydata:
            if event.button == 1:
                self.controller.add_example(event.xdata, event.ydata, 1)
            elif event.button == 3:
                self.controller.add_example(event.xdata, event.ydata, -1)

    def update_example(self, model, idx):
        x, y, l = model.data[idx]
        if l == 1:
            color = "w"
        elif l == -1:
            color = "k"
        self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0)

    def update(self, event, model):
        if event == "examples_loaded":
            for i in range(len(model.data)):
                self.update_example(model, i)

        if event == "example_added":
            self.update_example(model, -1)

        if event == "clear":
            self.ax.clear()
            self.ax.set_xticks([])
            self.ax.set_yticks([])
            self.contours = []
            self.c_labels = None
            self.plot_kernels()

        if event == "surface":
            self.remove_surface()
            self.plot_support_vectors(model.clf.support_vectors_)
            self.plot_decision_surface(model.surface, model.surface_type)

        self.canvas.draw()

    def remove_surface(self):
        if len(self.contours) > 0:
            for contour in self.contours:
                if isinstance(contour, ContourSet):
                    for lineset in contour.collections:
                        lineset.remove()
                else:
                    contour.remove()
            self.contours = []

    def plot_support_vectors(self, support_vectors):
        cs = self.ax.scatter(
            support_vectors[:, 0],
            support_vectors[:, 1],
            s=80,
            edgecolors="k",
            facecolors="none",
        )
        self.contours.append(cs)

    def plot_decision_surface(self, surface, type):
        X1, X2, Z = surface
        if type == 0:
            levels = [-1.0, 0.0, 1.0]
            linestyles = ["dashed", "solid", "dashed"]
            colors = "k"
            self.contours.append(
                self.ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)
            )
        elif type == 1:
            self.contours.append(
                self.ax.contourf(
                    X1, X2, Z, 10, cmap=matplotlib.cm.bone, origin="lower", alpha=0.85
                )
            )
            self.contours.append(
                self.ax.contour(X1, X2, Z, [0.0], colors="k", linestyles=["solid"])
            )
        else:
            raise ValueError("tipo de superficie desconocido")

Cree la clase ControllBar

La clase ControllBar se utiliza para controlar las entradas del usuario y mostrarlas en la GUI.

class ControllBar:
    def __init__(self, root, controller):
        fm = Tk.Frame(root)
        kernel_group = Tk.Frame(fm)
        Tk.Radiobutton(
            kernel_group,
            text="Lineal",
            variable=controller.kernel,
            value=0,
            command=controller.refit,
        ).pack(anchor=Tk.W)
        Tk.Radiobutton(
            kernel_group,
            text="RBF",
            variable=controller.kernel,
            value=1,
            command=controller.refit,
        ).pack(anchor=Tk.W)
        Tk.Radiobutton(
            kernel_group,
            text="Polinomial",
            variable=controller.kernel,
            value=2,
            command=controller.refit,
        ).pack(anchor=Tk.W)
        kernel_group.pack(side=Tk.LEFT)

        valbox = Tk.Frame(fm)
        controller.complexity = Tk.StringVar()
        controller.complexity.set("1.0")
        c = Tk.Frame(valbox)
        Tk.Label(c, text="C:", ancla="e", width=7).pack(side=Tk.LEFT)
        Tk.Entry(c, width=6, textvariable=controller.complexity).pack(side=Tk.LEFT)
        c.pack()

        controller.gamma = Tk.StringVar()
        controller.gamma.set("0.01")
        g = Tk.Frame(valbox)
        Tk.Label(g, text="gamma:", ancla="e", width=7).pack(side=Tk.LEFT)
        Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT)
        g.pack()

        controller.degree = Tk.StringVar()
        controller.degree.set("3")
        d = Tk.Frame(valbox)
        Tk.Label(d, text="grado:", ancla="e", width=7).pack(side=Tk.LEFT)
        Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT)
        d.pack()

        controller.coef0 = Tk.StringVar()
        controller.coef0.set("0")
        r = Tk.Frame(valbox)
        Tk.Label(r, text="coef0:", ancla="e", width=7).pack(side=Tk.LEFT)
        Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT)
        r.pack()
        valbox.pack(side=Tk.LEFT)

        cmap_group = Tk.Frame(fm)
        Tk.Radiobutton(
            cmap_group,
            text="Hiperplanos",
            variable=controller.surface_type,
            value=0,
            command=controller.refit,
        ).pack(anchor=Tk.W)
        Tk.Radiobutton(
            cmap_group,
            text="Superficie",
            variable=controller.surface_type,
            value=1,
            command=controller.refit,
        ).pack(anchor=Tk.W)

        cmap_group.pack(side=Tk.LEFT)

        train_button = Tk.Button(fm, text="Ajustar", width=5, command=controller.fit)
        train_button.pack()
        fm.pack(side=Tk.LEFT)
        Tk.Button(fm, text="Limpiar", width=5, command=controller.clear_data).pack(
            side=Tk.LEFT
        )

Cree la función principal

La función principal se utiliza para ejecutar el programa.

def main(argv):
    root = Tk.Tk()
    model = Model()
    controller = Controller(model)
    root.wm_title("Scikit-learn Libsvm GUI")
    view = View(root, controller)
    model.add_observer(view)
    Tk.mainloop()

Ejecute el programa

Ahora puede ejecutar el programa llamando a la función principal.

if __name__ == "__main__":
    main(sys.argv)

Resumen

En este tutorial, aprendiste cómo usar la interfaz gráfica de usuario (GUI) de Scikit-learn Libsvm para crear puntos de datos mediante clics y visualizar la región de decisión inducida por diferentes kernels y configuraciones de parámetros. También aprendiste cómo crear las clases Model, Controller, View y ControllBar, así como cómo ejecutar el programa.