Regresión cuantílica con Scikit-Learn

Machine LearningMachine LearningBeginner
Practicar Ahora

This tutorial is from open-source community. Access the source code

💡 Este tutorial está traducido por IA desde la versión en inglés. Para ver la versión original, puedes hacer clic aquí

Introducción

Este tutorial demostrará cómo realizar una regresión cuantílica utilizando scikit-learn. Generaremos dos conjuntos de datos sintéticos para ilustrar cómo la regresión cuantílica puede predecir cuantiles condicionales no triviales. Utilizaremos la clase QuantileRegressor para estimar la mediana, así como un cuantil bajo y alto fijados en el 5% y 95%, respectivamente. Compararemos QuantileRegressor con LinearRegression y evaluaremos su rendimiento utilizando el error absoluto medio (MAE) y el error cuadrático medio (MSE).

Consejos sobre la VM

Una vez finalizada la inicialización de la VM, haga clic en la esquina superior izquierda para cambiar a la pestaña Cuaderno y acceder a Jupyter Notebook para practicar.

A veces, es posible que tenga que esperar unos segundos a que Jupyter Notebook termine de cargarse. La validación de las operaciones no se puede automatizar debido a las limitaciones de Jupyter Notebook.

Si tiene problemas durante el aprendizaje, no dude en preguntar a Labby. Deje sus comentarios después de la sesión y lo resolveremos rápidamente para usted.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL sklearn(("Sklearn")) -.-> sklearn/CoreModelsandAlgorithmsGroup(["Core Models and Algorithms"]) sklearn(("Sklearn")) -.-> sklearn/ModelSelectionandEvaluationGroup(["Model Selection and Evaluation"]) ml(("Machine Learning")) -.-> ml/FrameworkandSoftwareGroup(["Framework and Software"]) sklearn/CoreModelsandAlgorithmsGroup -.-> sklearn/linear_model("Linear Models") sklearn/ModelSelectionandEvaluationGroup -.-> sklearn/model_selection("Model Selection") sklearn/ModelSelectionandEvaluationGroup -.-> sklearn/metrics("Metrics") ml/FrameworkandSoftwareGroup -.-> ml/sklearn("scikit-learn") subgraph Lab Skills sklearn/linear_model -.-> lab-49251{{"Regresión cuantílica con Scikit-Learn"}} sklearn/model_selection -.-> lab-49251{{"Regresión cuantílica con Scikit-Learn"}} sklearn/metrics -.-> lab-49251{{"Regresión cuantílica con Scikit-Learn"}} ml/sklearn -.-> lab-49251{{"Regresión cuantílica con Scikit-Learn"}} end

Generación del conjunto de datos

Generaremos dos conjuntos de datos sintéticos con el mismo valor esperado utilizando una relación lineal con una sola característica x. Agregaremos ruido normal heterocedástico y ruido de Pareto asimétrico a los conjuntos de datos.

import numpy as np

rng = np.random.RandomState(42)
x = np.linspace(start=0, stop=10, num=100)
X = x[:, np.newaxis]
y_true_mean = 10 + 0.5 * x

## Ruido normal heterocedástico
y_normal = y_true_mean + rng.normal(loc=0, scale=0.5 + 0.5 * x, size=x.shape[0])

## Ruido de Pareto asimétrico
a = 5
y_pareto = y_true_mean + 10 * (rng.pareto(a, size=x.shape[0]) - 1 / (a - 1))

Visualización del conjunto de datos

Visualizaremos los conjuntos de datos y la distribución de los residuos y - mean(y).

import matplotlib.pyplot as plt

_, axs = plt.subplots(nrows=2, ncols=2, figsize=(15, 11), sharex="row", sharey="row")

axs[0, 0].plot(x, y_true_mean, label="True mean")
axs[0, 0].scatter(x, y_normal, color="black", alpha=0.5, label="Observations")
axs[1, 0].hist(y_true_mean - y_normal, edgecolor="black")

axs[0, 1].plot(x, y_true_mean, label="True mean")
axs[0, 1].scatter(x, y_pareto, color="black", alpha=0.5, label="Observations")
axs[1, 1].hist(y_true_mean - y_pareto, edgecolor="black")

axs[0, 0].set_title("Dataset with heteroscedastic Normal distributed targets")
axs[0, 1].set_title("Dataset with asymmetric Pareto distributed target")
axs[1, 0].set_title(
    "Residuals distribution for heteroscedastic Normal distributed targets"
)
axs[1, 1].set_title("Residuals distribution for asymmetric Pareto distributed target")
axs[0, 0].legend()
axs[0, 1].legend()
axs[0, 0].set_ylabel("y")
axs[1, 0].set_ylabel("Counts")
axs[0, 1].set_xlabel("x")
axs[0, 0].set_xlabel("x")
axs[1, 0].set_xlabel("Residuals")
_ = axs[1, 1].set_xlabel("Residuals")

Regresión cuantílica

Utilizaremos la clase QuantileRegressor para estimar la mediana, así como un cuantil bajo y alto fijados en el 5% y 95%, respectivamente. Utilizaremos los cuantiles en el 5% y 95% para encontrar los valores atípicos en la muestra de entrenamiento más allá del intervalo central del 90%.

from sklearn.linear_model import QuantileRegressor

## Esta línea es para evitar incompatibilidades si se utiliza una versión antigua de SciPy.
## Debería utilizar `solver="highs"` con una versión reciente de SciPy.
solver = "highs" if sp_version >= parse_version("1.6.0") else "interior-point"

quantiles = [0.05, 0.5, 0.95]
predictions = {}
out_bounds_predictions = np.zeros_like(y_true_mean, dtype=np.bool_)
for quantile in quantiles:
    qr = QuantileRegressor(quantile=quantile, alpha=0, solver=solver)
    y_pred = qr.fit(X, y_normal).predict(X)
    predictions[quantile] = y_pred

    if quantile == min(quantiles):
        out_bounds_predictions = np.logical_or(
            out_bounds_predictions, y_pred >= y_normal
        )
    elif quantile == max(quantiles):
        out_bounds_predictions = np.logical_or(
            out_bounds_predictions, y_pred <= y_normal
        )

plt.plot(X, y_true_mean, color="black", linestyle="dashed", label="True mean")

for quantile, y_pred in predictions.items():
    plt.plot(X, y_pred, label=f"Quantile: {quantile}")

plt.scatter(
    x[out_bounds_predictions],
    y_normal[out_bounds_predictions],
    color="black",
    marker="+",
    alpha=0.5,
    label="Outside interval",
)
plt.scatter(
    x[~out_bounds_predictions],
    y_normal[~out_bounds_predictions],
    color="black",
    alpha=0.5,
    label="Inside interval",
)

plt.legend()
plt.xlabel("x")
plt.ylabel("y")
_ = plt.title("Quantiles of heteroscedastic Normal distributed target")

quantiles = [0.05, 0.5, 0.95]
predictions = {}
out_bounds_predictions = np.zeros_like(y_true_mean, dtype=np.bool_)
for quantile in quantiles:
    qr = QuantileRegressor(quantile=quantile, alpha=0, solver=solver)
    y_pred = qr.fit(X, y_pareto).predict(X)
    predictions[quantile] = y_pred

    if quantile == min(quantiles):
        out_bounds_predictions = np.logical_or(
            out_bounds_predictions, y_pred >= y_pareto
        )
    elif quantile == max(quantiles):
        out_bounds_predictions = np.logical_or(
            out_bounds_predictions, y_pred <= y_pareto
        )

plt.plot(X, y_true_mean, color="black", linestyle="dashed", label="True mean")

for quantile, y_pred in predictions.items():
    plt.plot(X, y_pred, label=f"Quantile: {quantile}")

plt.scatter(
    x[out_bounds_predictions],
    y_pareto[out_bounds_predictions],
    color="black",
    marker="+",
    alpha=0.5,
    label="Outside interval",
)
plt.scatter(
    x[~out_bounds_predictions],
    y_pareto[~out_bounds_predictions],
    color="black",
    alpha=0.5,
    label="Inside interval",
)

plt.legend()
plt.xlabel("x")
plt.ylabel("y")
_ = plt.title("Quantiles of asymmetric Pareto distributed target")

Comparar QuantileRegressor y LinearRegression

Compararemos QuantileRegressor y LinearRegression y evaluaremos su rendimiento utilizando el error absoluto medio (MAE) y el error cuadrático medio (MSE).

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import cross_validate

linear_regression = LinearRegression()
quantile_regression = QuantileRegressor(quantile=0.5, alpha=0, solver=solver)

y_pred_lr = linear_regression.fit(X, y_pareto).predict(X)
y_pred_qr = quantile_regression.fit(X, y_pareto).predict(X)

print(f"""Error de entrenamiento (rendimiento en la muestra)
    {linear_regression.__class__.__name__}:
    MAE = {mean_absolute_error(y_pareto, y_pred_lr):.3f}
    MSE = {mean_squared_error(y_pareto, y_pred_lr):.3f}
    {quantile_regression.__class__.__name__}:
    MAE = {mean_absolute_error(y_pareto, y_pred_qr):.3f}
    MSE = {mean_squared_error(y_pareto, y_pred_qr):.3f}
    """)

cv_results_lr = cross_validate(
    linear_regression,
    X,
    y_pareto,
    cv=3,
    scoring=["neg_mean_absolute_error", "neg_mean_squared_error"],
)
cv_results_qr = cross_validate(
    quantile_regression,
    X,
    y_pareto,
    cv=3,
    scoring=["neg_mean_absolute_error", "neg_mean_squared_error"],
)
print(f"""Error de prueba (rendimiento validado cruzado)
    {linear_regression.__class__.__name__}:
    MAE = {-cv_results_lr["test_neg_mean_absolute_error"].mean():.3f}
    MSE = {-cv_results_lr["test_neg_mean_squared_error"].mean():.3f}
    {quantile_regression.__class__.__name__}:
    MAE = {-cv_results_qr["test_neg_mean_absolute_error"].mean():.3f}
    MSE = {-cv_results_qr["test_neg_mean_squared_error"].mean():.3f}
    """)

Resumen

En este tutorial, aprendimos cómo realizar una regresión cuantílica utilizando scikit-learn. Generamos dos conjuntos de datos sintéticos para ilustrar cómo la regresión cuantílica puede predecir cuantiles condicionales no triviales. Utilizamos la clase QuantileRegressor para estimar la mediana, así como un cuantil bajo y alto fijados en el 5% y 95%, respectivamente. Comparamos QuantileRegressor con LinearRegression y evaluamos su rendimiento utilizando el error absoluto medio (MAE) y el error cuadrático medio (MSE).