Algoritmos de clasificación de Análisis Discriminante

Machine LearningMachine LearningBeginner
Practicar Ahora

This tutorial is from open-source community. Access the source code

💡 Este tutorial está traducido por IA desde la versión en inglés. Para ver la versión original, puedes hacer clic aquí

Introducción

En este laboratorio, aprenderemos sobre Análisis Discriminante Lineal y Cuadrático (LDA y QDA). El LDA y el QDA son algoritmos de clasificación que se utilizan para encontrar un límite de decisión lineal y cuadrático, respectivamente, entre dos o más clases. Utilizaremos la biblioteca scikit-learn para implementar estos algoritmos y visualizar los límites de decisión.

Consejos sobre la VM

Una vez que se haya iniciado la VM, haga clic en la esquina superior izquierda para cambiar a la pestaña Cuaderno y acceder a Jupyter Notebook para practicar.

A veces, es posible que tenga que esperar unos segundos a que Jupyter Notebook termine de cargarse. La validación de las operaciones no se puede automatizar debido a las limitaciones de Jupyter Notebook.

Si tiene problemas durante el aprendizaje, no dude en preguntar a Labby. Deje sus comentarios después de la sesión y lo resolveremos rápidamente para usted.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL ml(("Machine Learning")) -.-> ml/FrameworkandSoftwareGroup(["Framework and Software"]) sklearn(("Sklearn")) -.-> sklearn/CoreModelsandAlgorithmsGroup(["Core Models and Algorithms"]) sklearn/CoreModelsandAlgorithmsGroup -.-> sklearn/discriminant_analysis("Discriminant Analysis") ml/FrameworkandSoftwareGroup -.-> ml/sklearn("scikit-learn") subgraph Lab Skills sklearn/discriminant_analysis -.-> lab-49193{{"Algoritmos de clasificación de Análisis Discriminante"}} ml/sklearn -.-> lab-49193{{"Algoritmos de clasificación de Análisis Discriminante"}} end

Importar bibliotecas y generar conjuntos de datos

Primero, importaremos las bibliotecas necesarias y generaremos dos conjuntos de datos: uno con una covarianza fija y otro con covarianzas variables.

import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg
from matplotlib import colors
import matplotlib as mpl
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis

## generar conjunto de datos con covarianza fija
def dataset_fixed_cov():
    n, dim = 300, 2
    np.random.seed(0)
    C = np.array([[0.0, -0.23], [0.83, 0.23]])
    X = np.r_[np.dot(np.random.randn(n, dim), C), np.dot(np.random.randn(n, dim), C) + np.array([1, 1])]
    y = np.hstack((np.zeros(n), np.ones(n)))
    return X, y

## generar conjunto de datos con covarianzas variables
def dataset_cov():
    n, dim = 300, 2
    np.random.seed(0)
    C = np.array([[0.0, -1.0], [2.5, 0.7]]) * 2.0
    X = np.r_[np.dot(np.random.randn(n, dim), C), np.dot(np.random.randn(n, dim), C.T) + np.array([1, 4])]
    y = np.hstack((np.zeros(n), np.ones(n)))
    return X, y

Crear mapa de colores

Crearemos un mapa de colores personalizado para utilizar en nuestras visualizaciones.

cmap = colors.LinearSegmentedColormap(
    "red_blue_classes",
    {
        "red": [(0, 1, 1), (1, 0.7, 0.7)],
        "green": [(0, 0.7, 0.7), (1, 0.7, 0.7)],
        "blue": [(0, 0.7, 0.7), (1, 1, 1)],
    },
)
plt.cm.register_cmap(cmap=cmap)

Funciones de trazado

Definiremos dos funciones para trazar los datos y las elipses.

def plot_data(lda, X, y, y_pred, fig_index):
    splot = plt.subplot(2, 2, fig_index)
    if fig_index == 1:
        plt.title("Análisis Discriminante Lineal")
        plt.ylabel("Datos con\n covarianza fija")
    elif fig_index == 2:
        plt.title("Análisis Discriminante Cuadrático")
    elif fig_index == 3:
        plt.ylabel("Datos con\n covarianzas variables")

    tp = y == y_pred  ## Verdadero Positivo
    tp0, tp1 = tp[y == 0], tp[y == 1]
    X0, X1 = X[y == 0], X[y == 1]
    X0_tp, X0_fp = X0[tp0], X0[~tp0]
    X1_tp, X1_fp = X1[tp1], X1[~tp1]

    ## clase 0: puntos
    plt.scatter(X0_tp[:, 0], X0_tp[:, 1], marker=".", color="red")
    plt.scatter(X0_fp[:, 0], X0_fp[:, 1], marker="x", s=20, color="#990000")  ## rojo oscuro

    ## clase 1: puntos
    plt.scatter(X1_tp[:, 0], X1_tp[:, 1], marker=".", color="blue")
    plt.scatter(X1_fp[:, 0], X1_fp[:, 1], marker="x", s=20, color="#000099")  ## azul oscuro

    ## clase 0 y 1 : áreas
    nx, ny = 200, 100
    x_min, x_max = plt.xlim()
    y_min, y_max = plt.ylim()
    xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx), np.linspace(y_min, y_max, ny))
    Z = lda.predict_proba(np.c_[xx.ravel(), yy.ravel()])
    Z = Z[:, 1].reshape(xx.shape)
    plt.pcolormesh(xx, yy, Z, cmap="red_blue_classes", norm=colors.Normalize(0.0, 1.0), zorder=0)
    plt.contour(xx, yy, Z, [0.5], linewidths=2.0, colors="white")

    ## medias
    plt.plot(lda.means_[0][0], lda.means_[0][1], "*", color="yellow", markersize=15, markeredgecolor="grey")
    plt.plot(lda.means_[1][0], lda.means_[1][1], "*", color="yellow", markersize=15, markeredgecolor="grey")

    return splot


def plot_ellipse(splot, mean, cov, color):
    v, w = linalg.eigh(cov)
    u = w[0] / linalg.norm(w[0])
    angle = np.arctan(u[1] / u[0])
    angle = 180 * angle / np.pi  ## convertir a grados
    ## Gaussiana rellena a 2 desviaciones estándar
    ell = mpl.patches.Ellipse(mean, 2 * v[0] ** 0.5, 2 * v[1] ** 0.5, angle=180 + angle, facecolor=color, edgecolor="black", linewidth=2)
    ell.set_clip_box(splot.bbox)
    ell.set_alpha(0.2)
    splot.add_artist(ell)
    splot.set_xticks(())
    splot.set_yticks(())

Trazar elipses de covarianza del LDA

Traza los elipsoides de covarianza para el LDA.

def plot_lda_cov(lda, splot):
    plot_ellipse(splot, lda.means_[0], lda.covariance_, "red")
    plot_ellipse(splot, lda.means_[1], lda.covariance_, "blue")

Trazar elipses de covarianza del QDA

Traza los elipsoides de covarianza para el QDA.

def plot_qda_cov(qda, splot):
    plot_ellipse(splot, qda.means_[0], qda.covariance_[0], "red")
    plot_ellipse(splot, qda.means_[1], qda.covariance_[1], "blue")

Visualizar los límites de decisión

Utilizaremos los conjuntos de datos generados en el Paso 1 para visualizar los límites de decisión para el LDA y el QDA.

plt.figure(figsize=(10, 8), facecolor="white")
plt.suptitle("Análisis Discriminante Lineal vs Análisis Discriminante Cuadrático", y=0.98, fontsize=15)

for i, (X, y) in enumerate([dataset_fixed_cov(), dataset_cov()]):
    ## Análisis Discriminante Lineal
    lda = LinearDiscriminantAnalysis(solver="svd", store_covariance=True)
    y_pred = lda.fit(X, y).predict(X)
    splot = plot_data(lda, X, y, y_pred, fig_index=2 * i + 1)
    plot_lda_cov(lda, splot)
    plt.axis("tight")

    ## Análisis Discriminante Cuadrático
    qda = QuadraticDiscriminantAnalysis(store_covariance=True)
    y_pred = qda.fit(X, y).predict(X)
    splot = plot_data(qda, X, y, y_pred, fig_index=2 * i + 2)
    plot_qda_cov(qda, splot)
    plt.axis("tight")

plt.tight_layout()
plt.subplots_adjust(top=0.92)
plt.show()

Resumen

En este laboratorio, aprendimos sobre el Análisis Discriminante Lineal y Cuadrático (LDA y QDA). Generamos dos conjuntos de datos y utilizamos el LDA y el QDA para encontrar los límites de decisión lineales y cuadráticos, respectivamente. Visualizamos los límites de decisión y los elipsoides de covarianza para cada algoritmo.