Matplotlib PSD Plotting

PythonPythonBeginner
Jetzt üben

This tutorial is from open-source community. Access the source code

💡 Dieser Artikel wurde von AI-Assistenten übersetzt. Um die englische Version anzuzeigen, können Sie hier klicken

Einführung

In diesem Tutorial führen wir Sie durch den Prozess der Darstellung der Leistungsdichtespektrum (PSD) mithilfe der Matplotlib-Bibliothek in Python. Das PSD ist ein häufig verwendetes Diagramm im Bereich der Signalverarbeitung. NumPy verfügt über viele nützliche Bibliotheken zur Berechnung eines PSD, und wir werden einige Beispiele zeigen, wie dies mit Matplotlib erreicht und visualisiert werden kann.

Tipps für die virtuelle Maschine

Nachdem der Start der virtuellen Maschine abgeschlossen ist, klicken Sie in der oberen linken Ecke, um zur Registerkarte Notebook zu wechseln und Jupyter Notebook für die Übung zu öffnen.

Manchmal müssen Sie einige Sekunden warten, bis Jupyter Notebook vollständig geladen ist. Die Validierung von Vorgängen kann aufgrund der Einschränkungen in Jupyter Notebook nicht automatisiert werden.

Wenn Sie bei der Lernphase Probleme haben, können Sie Labby gerne fragen. Geben Sie nach der Sitzung Feedback, und wir werden das Problem für Sie prompt beheben.

Ein einfaches Leistungsdichtespektrum (PSD) darstellen

Zunächst werden wir ein einfaches PSD mit zufälligen Daten darstellen. Wir werden eine Zeitreihe erstellen, Rauschen hinzufügen und dann das PSD mit der psd-Funktion aus der matplotlib.mlab-Bibliothek darstellen.

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.mlab as mlab

np.random.seed(19680801)
dt = 0.01
t = np.arange(0, 10, dt)
nse = np.random.randn(len(t))
r = np.exp(-t / 0.05)
cnse = np.convolve(nse, r) * dt
cnse = cnse[:len(t)]
s = 0.1 * np.sin(2 * np.pi * t) + cnse

fig, (ax0, ax1) = plt.subplots(2, 1)
ax0.plot(t, s)
ax1.psd(s, 512, 1 / dt)

plt.show()

Vergleich mit dem äquivalenten MATLAB-Code

Wir können den vorherigen Code mit dem äquivalenten MATLAB-Code vergleichen, um das gleiche zu erreichen:

dt = 0.01;
t = [0:dt:10];
nse = randn(size(t));
r = exp(-t/0.05);
cnse = conv(nse, r)*dt;
cnse = cnse(1:length(t));
s = 0.1*sin(2*pi*t) + cnse;

subplot(211)
plot(t, s)
subplot(212)
psd(s, 512, 1/dt)

Leistungsdichtespektrum (PSD) mit unterschiedlicher Anzahl von Nullen als Auffüllung darstellen

Als nächstes werden wir das PSD mit unterschiedlicher Anzahl von Nullen als Auffüllung darstellen. Dabei wird die gesamte Zeitreihe auf einmal verwendet.

dt = np.pi / 100.
fs = 1. / dt
t = np.arange(0, 8, dt)
y = 10. * np.sin(2 * np.pi * 4 * t) + 5. * np.sin(2 * np.pi * 4.25 * t)
y = y + np.random.randn(*t.shape)

fig, axs = plt.subplot_mosaic([
    ['signal','signal','signal'],
    ['zero padding', 'block size', 'overlap'],
], layout='constrained')

axs['signal'].plot(t, y)
axs['signal'].set_xlabel('time [s]')
axs['signal'].set_ylabel('signal')

axs['zero padding'].psd(y, NFFT=len(t), pad_to=len(t), Fs=fs)
axs['zero padding'].psd(y, NFFT=len(t), pad_to=len(t) * 2, Fs=fs)
axs['zero padding'].psd(y, NFFT=len(t), pad_to=len(t) * 4, Fs=fs)

axs['block size'].psd(y, NFFT=len(t), pad_to=len(t), Fs=fs)
axs['block size'].psd(y, NFFT=len(t) // 2, pad_to=len(t), Fs=fs)
axs['block size'].psd(y, NFFT=len(t) // 4, pad_to=len(t), Fs=fs)
axs['block size'].set_ylabel('')

axs['overlap'].psd(y, NFFT=len(t) // 2, pad_to=len(t), noverlap=0, Fs=fs)
axs['overlap'].psd(y, NFFT=len(t) // 2, pad_to=len(t),
                   noverlap=int(0.025 * len(t)), Fs=fs)
axs['overlap'].psd(y, NFFT=len(t) // 2, pad_to=len(t),
                   noverlap=int(0.1 * len(t)), Fs=fs)
axs['overlap'].set_ylabel('')
axs['overlap'].set_title('overlap')

for title, ax in axs.items():
    if title =='signal':
        continue

    ax.set_title(title)
    ax.sharex(axs['zero padding'])
    ax.sharey(axs['zero padding'])

plt.show()

Leistungsdichtespektrum (PSD) eines komplexen Signals darstellen

Schließlich werden wir das PSD eines komplexen Signals darstellen, um zu demonstrieren, dass komplexe PSDs richtig funktionieren.

prng = np.random.RandomState(19680801)
fs = 1000
t = np.linspace(0, 0.3, 301)
A = np.array([2, 8]).reshape(-1, 1)
f = np.array([150, 140]).reshape(-1, 1)
xn = (A * np.exp(2j * np.pi * f * t)).sum(axis=0) + 5 * prng.randn(*t.shape)

fig, (ax0, ax1) = plt.subplots(ncols=2, layout='constrained')

yticks = np.arange(-50, 30, 10)
yrange = (yticks[0], yticks[-1])
xticks = np.arange(-500, 550, 200)

ax0.psd(xn, NFFT=301, Fs=fs, window=mlab.window_none, pad_to=1024,
        scale_by_freq=True)
ax0.set_title('Periodogramm')
ax0.set_yticks(yticks)
ax0.set_xticks(xticks)
ax0.grid(True)
ax0.set_ylim(yrange)

ax1.psd(xn, NFFT=150, Fs=fs, window=mlab.window_none, pad_to=512, noverlap=75,
        scale_by_freq=True)
ax1.set_title('Welch')
ax1.set_xticks(xticks)
ax1.set_yticks(yticks)
ax1.set_ylabel('')
ax1.grid(True)
ax1.set_ylim(yrange)

plt.show()

Zusammenfassung

In diesem Tutorial haben wir Ihnen gezeigt, wie Sie die Leistungsdichtespektrum (PSD) mit der Matplotlib-Bibliothek in Python darstellen. Wir haben begonnen, indem wir ein einfaches PSD dargestellt haben, verglichen es dann mit dem äquivalenten MATLAB-Code. Anschließend haben wir das PSD mit unterschiedlicher Anzahl von Nullen als Auffüllung dargestellt, gefolgt von der Darstellung des PSDs eines komplexen Signals.