Erstellen von Pseudocolor-Diagrammen mit Matplotlib Tripcolor

PythonPythonBeginner
Jetzt üben

This tutorial is from open-source community. Access the source code

💡 Dieser Artikel wurde von AI-Assistenten übersetzt. Um die englische Version anzuzeigen, können Sie hier klicken

Einführung

In diesem Tutorial wird Ihnen die Erstellung von Pseudofarbendiagrammen von unstrukturierten Dreiecksnetzen mit der tripcolor()-Funktion von Python Matplotlib gezeigt.

Tipps für die VM

Nachdem der VM-Start abgeschlossen ist, klicken Sie in der oberen linken Ecke, um zur Registerkarte Notebook zu wechseln und Jupyter Notebook für die Übung zu öffnen.

Manchmal müssen Sie einige Sekunden warten, bis Jupyter Notebook vollständig geladen ist. Die Validierung von Vorgängen kann aufgrund der Einschränkungen von Jupyter Notebook nicht automatisiert werden.

Wenn Sie bei der Lernphase Probleme haben, können Sie Labby um Hilfe bitten. Geben Sie nach der Sitzung Feedback, und wir werden das Problem für Sie prompt beheben.

Bibliotheken importieren

Zunächst müssen wir die erforderlichen Bibliotheken für dieses Tutorial importieren.

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.tri as tri

Erstellen einer Delaunay-Triangulation

Wir werden eine Delaunay-Triangulation der Punkte erstellen. Zunächst werden wir die x- und y-Koordinaten der Punkte mit NumPy erstellen.

n_angles = 36
n_radii = 8
min_radius = 0.25
radii = np.linspace(min_radius, 0.95, n_radii)
angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
angles[:, 1::2] += np.pi / n_angles
x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()

Dann werden wir die z-Koordinaten der Punkte erstellen.

z = (np.cos(radii) * np.cos(3 * angles)).flatten()

Als nächstes werden wir das Triangulationsobjekt mit der Triangulation()-Funktion aus matplotlib.tri erstellen. Da wir die Dreiecke nicht angeben, wird automatisch die Delaunay-Triangulation erstellt.

triang = tri.Triangulation(x, y)

Schließlich werden wir die unerwünschten Dreiecke mit der set_mask()-Funktion ausblenden. In diesem Beispiel setzen wir die Maske, um Dreiecke mit einem mittleren Radius kleiner als min_radius auszuschließen.

triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1),
                         y[triang.triangles].mean(axis=1))
                < min_radius)

Erstellen eines Tripcolor-Diagramms

Jetzt werden wir ein Tripcolor-Diagramm mit der tripcolor()-Funktion erstellen. Wir werden zwei Diagramme mit unterschiedlichen Schattierungsverfahren erstellen.

## Flat shading plot
fig1, ax1 = plt.subplots()
ax1.set_aspect('equal')
tpc = ax1.tripcolor(triang, z, shading='flat')
fig1.colorbar(tpc)
ax1.set_title('tripcolor of Delaunay triangulation, flat shading')

## Gouraud shading plot
fig2, ax2 = plt.subplots()
ax2.set_aspect('equal')
tpc = ax2.tripcolor(triang, z, shading='gouraud')
fig2.colorbar(tpc)
ax2.set_title('tripcolor of Delaunay triangulation, gouraud shading')

Erstellen einer benutzerdefinierten Triangulation

Wir können auch unsere eigene Triangulation mithilfe der x-, y- und triangles-Arrays angeben. In diesem Beispiel werden wir eine benutzerdefinierte Triangulation mit der tripcolor()-Funktion erstellen.

## Create x, y, and triangles arrays
xy = np.asarray([
    [-0.101, 0.872], [-0.080, 0.883], [-0.069, 0.888], [-0.054, 0.890],
    [-0.045, 0.897], [-0.057, 0.895], [-0.073, 0.900], [-0.087, 0.898],
    [-0.090, 0.904], [-0.069, 0.907], [-0.069, 0.921], [-0.080, 0.919],
    [-0.073, 0.928], [-0.052, 0.930], [-0.048, 0.942], [-0.062, 0.949],
    [-0.054, 0.958], [-0.069, 0.954], [-0.087, 0.952], [-0.087, 0.959],
    [-0.080, 0.966], [-0.085, 0.973], [-0.087, 0.965], [-0.097, 0.965],
    [-0.097, 0.975], [-0.092, 0.984], [-0.101, 0.980], [-0.108, 0.980],
    [-0.104, 0.987], [-0.102, 0.993], [-0.115, 1.001], [-0.099, 0.996],
    [-0.101, 1.007], [-0.090, 1.010], [-0.087, 1.021], [-0.069, 1.021],
    [-0.052, 1.022], [-0.052, 1.017], [-0.069, 1.010], [-0.064, 1.005],
    [-0.048, 1.005], [-0.031, 1.005], [-0.031, 0.996], [-0.040, 0.987],
    [-0.045, 0.980], [-0.052, 0.975], [-0.040, 0.973], [-0.026, 0.968],
    [-0.020, 0.954], [-0.006, 0.947], [ 0.003, 0.935], [ 0.006, 0.926],
    [ 0.005, 0.921], [ 0.022, 0.923], [ 0.033, 0.912], [ 0.029, 0.905],
    [ 0.017, 0.900], [ 0.012, 0.895], [ 0.027, 0.893], [ 0.019, 0.886],
    [ 0.001, 0.883], [-0.012, 0.884], [-0.029, 0.883], [-0.038, 0.879],
    [-0.057, 0.881], [-0.062, 0.876], [-0.078, 0.876], [-0.087, 0.872],
    [-0.030, 0.907], [-0.007, 0.905], [-0.057, 0.916], [-0.025, 0.933],
    [-0.077, 0.990], [-0.059, 0.993]])
x, y = np.rad2deg(xy).T
triangles = np.asarray([
    [67, 66,  1], [65,  2, 66], [ 1, 66,  2], [64,  2, 65], [63,  3, 64],
    [60, 59, 57], [ 2, 64,  3], [ 3, 63,  4], [ 0, 67,  1], [62,  4, 63],
    [57, 59, 56], [59, 58, 56], [61, 60, 69], [57, 69, 60], [ 4, 62, 68],
    [ 6,  5,  9], [61, 68, 62], [69, 68, 61], [ 9,  5, 70], [ 6,  8,  7],
    [ 4, 70,  5], [ 8,  6,  9], [56, 69, 57], [69, 56, 52], [70, 10,  9],
    [54, 53, 55], [56, 55, 53], [68, 70,  4], [52, 56, 53], [11, 10, 12],
    [69, 71, 68], [68, 13, 70], [10, 70, 13], [51, 50, 52], [13, 68, 71],
    [52, 71, 69], [12, 10, 13], [71, 52, 50], [71, 14, 13], [50, 49, 71],
    [49, 48, 71], [14, 16, 15], [14, 71, 48], [17, 19, 18], [17, 20, 19],
    [48, 16, 14], [48, 47, 16], [47, 46, 16], [16, 46, 45], [23, 22, 24],
    [21, 24, 22], [17, 16, 45], [20, 17, 45], [21, 25, 24], [27, 26, 28],
    [20, 72, 21], [25, 21, 72], [45, 72, 20], [25, 28, 26], [44, 73, 45],
    [72, 45, 73], [28, 25, 29], [29, 25, 31], [43, 73, 44], [73, 43, 40],
    [72, 73, 39], [72, 31, 25], [42, 40, 43], [31, 30, 29], [39, 73, 40],
    [42, 41, 40], [72, 33, 31], [32, 31, 33], [39, 38, 72], [33, 72, 38],
    [33, 38, 34], [37, 35, 38], [34, 38, 35], [35, 37, 36]])

Dann werden wir die z-Koordinaten der Flächen mit der mean()-Funktion erstellen.

xmid = x[triangles].mean(axis=1)
ymid = y[triangles].mean(axis=1)
x0 = -5
y0 = 52
zfaces = np.exp(-0.01 * ((xmid - x0) * (xmid - x0) +
                         (ymid - y0) * (ymid - y0)))

Schließlich werden wir das Tripcolor-Diagramm mit der tripcolor()-Funktion erstellen und die x-, y-, triangles-, facecolors- und edgecolors angeben.

fig3, ax3 = plt.subplots()
ax3.set_aspect('equal')
tpc = ax3.tripcolor(x, y, triangles, facecolors=zfaces, edgecolors='k')
fig3.colorbar(tpc)
ax3.set_title('tripcolor of user-specified triangulation')
ax3.set_xlabel('Longitude (degrees)')
ax3.set_ylabel('Latitude (degrees)')

Zeichnen der Ergebnisse

Schließlich werden wir die show()-Funktion verwenden, um die Diagramme anzuzeigen.

plt.show()

Zusammenfassung

In diesem Tutorial haben wir gelernt, wie man mit der tripcolor()-Funktion von Python Matplotlib pseudocolor-Diagramme von unstrukturierten Dreiecksgittern erstellt. Wir haben eine Delaunay-Triangulation und eine benutzerdefinierte Triangulation erstellt und die Ergebnisse mit unterschiedlichen Schattierungsverfahren geplottet.