Vorhersageverzögerung mit Scikit-Learn-Schätzern

Machine LearningMachine LearningBeginner
Jetzt üben

This tutorial is from open-source community. Access the source code

💡 Dieser Artikel wurde von AI-Assistenten übersetzt. Um die englische Version anzuzeigen, können Sie hier klicken

Einführung

Die Vorhersageverzögerung von Machine-Learning-Modellen ist ein entscheidender Faktor in Echtzeitanwendungen. In diesem Lab verwenden wir Scikit-Learn-Schätzer, um die Vorhersageverzögerung verschiedener Regressoren zu benchmarken. Wir messen die Verzögerung bei der Vorhersage in Batch- oder Atommodus. Die Diagramme werden die Verteilung der Vorhersageverzögerung als Boxplot darstellen.

Tipps für die VM

Nachdem der VM-Start abgeschlossen ist, klicken Sie in der oberen linken Ecke, um zur Registerkarte Notebook zu wechseln und Jupyter Notebook für die Übung zu nutzen.

Manchmal müssen Sie einige Sekunden warten, bis Jupyter Notebook vollständig geladen ist. Die Validierung von Vorgängen kann aufgrund von Einschränkungen in Jupyter Notebook nicht automatisiert werden.

Wenn Sie während des Lernens Probleme haben, können Sie Labby fragen. Geben Sie nach der Sitzung Feedback, und wir werden das Problem für Sie prompt beheben.

Ein Regressionsdataset generieren

Wir werden mit der make_regression-Funktion von Scikit-Learn ein Regressionsdataset mit den angegebenen Parametern generieren. Das Dataset wird n_train Trainingsinstanzen, n_test Testinstanzen, n_features Merkmale und einen noise von 0,1 haben.

X, y, coef = make_regression(
    n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True
)

random_seed = 13
X_train, X_test, y_train, y_test = train_test_split(
    X, y, train_size=n_train, test_size=n_test, random_state=random_seed
)
X_train, y_train = shuffle(X_train, y_train, random_state=random_seed)

X_scaler = StandardScaler()
X_train = X_scaler.fit_transform(X_train)
X_test = X_scaler.transform(X_test)

y_scaler = StandardScaler()
y_train = y_scaler.fit_transform(y_train[:, None])[:, 0]
y_test = y_scaler.transform(y_test[:, None])[:, 0]

Benchmark und Darstellung der atomaren und batchweisen Vorhersageverzögerung

Wir werden die predict()-Methode von Scikit-Learn verwenden, um die Laufzeit der Vorhersage für jede Instanz und die gesamte Eingabe zu messen. Wir werden die benchmark_estimator()-Funktion verwenden, um die Laufzeiten der Vorhersage im atomaren und batchweisen Modus zu messen. Anschließend werden wir die boxplot_runtimes()-Funktion verwenden, um die Verteilung der Vorhersageverzögerung als Boxplot darzustellen.

def benchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False):
    atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose)
    bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose)
    return atomic_runtimes, bulk_runtimes

def boxplot_runtimes(runtimes, pred_type, configuration):
    fig, ax1 = plt.subplots(figsize=(10, 6))
    bp = plt.boxplot(
        runtimes,
    )
    cls_infos = [
        "%s\n(%d %s)"
        % (
            estimator_conf["name"],
            estimator_conf["complexity_computer"](estimator_conf["instance"]),
            estimator_conf["complexity_label"],
        )
        for estimator_conf in configuration["estimators"]
    ]
    plt.setp(ax1, xticklabels=cls_infos)
    plt.setp(bp["boxes"], color="black")
    plt.setp(bp["whiskers"], color="black")
    plt.setp(bp["fliers"], color="red", marker="+")
    ax1.yaxis.grid(True, linestyle="-", which="major", color="lightgrey", alpha=0.5)
    ax1.set_axisbelow(True)
    ax1.set_title(
        "Prediction Time per Instance - %s, %d feats."
        % (pred_type.capitalize(), configuration["n_features"])
    )
    ax1.set_ylabel("Prediction Time (us)")
    plt.show()

configuration = {
    "n_train": int(1e3),
    "n_test": int(1e2),
    "n_features": int(1e2),
    "estimators": [
        {
            "name": "Linear Model",
            "instance": SGDRegressor(
                penalty="elasticnet", alpha=0.01, l1_ratio=0.25, tol=1e-4
            ),
            "complexity_label": "non-zero coefficients",
            "complexity_computer": lambda clf: np.count_nonzero(clf.coef_),
        },
        {
            "name": "RandomForest",
            "instance": RandomForestRegressor(),
            "complexity_label": "estimators",
            "complexity_computer": lambda clf: clf.n_estimators,
        },
        {
            "name": "SVR",
            "instance": SVR(kernel="rbf"),
            "complexity_label": "support vectors",
            "complexity_computer": lambda clf: len(clf.support_vectors_),
        },
    ],
}
X_train, y_train, X_test, y_test = generate_dataset(
    configuration["n_train"], configuration["n_test"], configuration["n_features"]
)
stats = {}
for estimator_conf in configuration["estimators"]:
    estimator_conf["instance"].fit(X_train, y_train)
    gc.collect()
    a, b = benchmark_estimator(estimator_conf["instance"], X_test)
    stats[estimator_conf["name"]] = {"atomic": a, "bulk": b}
cls_names = [estimator_conf["name"] for estimator_conf in configuration["estimators"]]
runtimes = [1e6 * stats[clf_name]["atomic"] for clf_name in cls_names]
boxplot_runtimes(runtimes, "atomic", configuration)
runtimes = [1e6 * stats[clf_name]["bulk"] for clf_name in cls_names]
boxplot_runtimes(runtimes, "bulk (%d)" % configuration["n_test"], configuration)

Benchmark der Auswirkungen von n_features auf die Vorhersageverzögerung

Wir werden den Ridge()-Schätzer von Scikit-Learn verwenden, um den Einfluss der Anzahl der Merkmale auf die Vorhersagezeit zu schätzen. Wir werden die n_feature_influence()-Funktion verwenden, um den Einfluss zu schätzen, und die plot_n_features_influence()-Funktion, um die Entwicklung der Vorhersagezeit in Abhängigkeit von der Anzahl der Merkmale zu visualisieren.

def n_feature_influence(estimators, n_train, n_test, n_features, percentile):
    percentiles = defaultdict(defaultdict)
    for n in n_features:
        X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n)
        for cls_name, estimator in estimators.items():
            estimator.fit(X_train, y_train)
            gc.collect()
            runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False)
            percentiles[cls_name][n] = 1e6 * np.percentile(runtimes, percentile)
    return percentiles

def plot_n_features_influence(percentiles, percentile):
    fig, ax1 = plt.subplots(figsize=(10, 6))
    colors = ["r", "g", "b"]
    for i, cls_name in enumerate(percentiles.keys()):
        x = np.array(sorted([n for n in percentiles[cls_name].keys()]))
        y = np.array([percentiles[cls_name][n] for n in x])
        plt.plot(
            x,
            y,
            color=colors[i],
        )
    ax1.yaxis.grid(True, linestyle="-", which="major", color="lightgrey", alpha=0.5)
    ax1.set_axisbelow(True)
    ax1.set_title("Evolution of Prediction Time with #Features")
    ax1.set_xlabel("#Features")
    ax1.set_ylabel("Prediction Time at %d%%-ile (us)" % percentile)
    plt.show()

percentile = 90
percentiles = n_feature_influence(
    {"ridge": Ridge()},
    configuration["n_train"],
    configuration["n_test"],
    [100, 250, 500],
    percentile,
)
plot_n_features_influence(percentiles, percentile)

Benchmark der Durchsatzleistung

Wir werden die predict()-Methode von Scikit-Learn verwenden, um die Durchsatzleistung für verschiedene Schätzer zu messen. Wir werden die benchmark_throughputs()-Funktion verwenden, um die Durchsatzleistung zu benchmarken, und die plot_benchmark_throughput()-Funktion, um die Vorhersagedurchsatzleistung für verschiedene Schätzer zu visualisieren.

def benchmark_throughputs(configuration, duration_secs=0.1):
    X_train, y_train, X_test, y_test = generate_dataset(
        configuration["n_train"], configuration["n_test"], configuration["n_features"]
    )
    throughputs = dict()
    for estimator_config in configuration["estimators"]:
        estimator_config["instance"].fit(X_train, y_train)
        start_time = time.time()
        n_predictions = 0
        while (time.time() - start_time) < duration_secs:
            estimator_config["instance"].predict(X_test[[0]])
            n_predictions += 1
        throughputs[estimator_config["name"]] = n_predictions / duration_secs
    return throughputs

def plot_benchmark_throughput(throughputs, configuration):
    fig, ax = plt.subplots(figsize=(10, 6))
    colors = ["r", "g", "b"]
    cls_infos = [
        "%s\n(%d %s)"
        % (
            estimator_conf["name"],
            estimator_conf["complexity_computer"](estimator_conf["instance"]),
            estimator_conf["complexity_label"],
        )
        for estimator_conf in configuration["estimators"]
    ]
    cls_values = [
        throughputs[estimator_conf["name"]]
        for estimator_conf in configuration["estimators"]
    ]
    plt.bar(range(len(throughputs)), cls_values, width=0.5, color=colors)
    ax.set_xticks(np.linspace(0.25, len(throughputs) - 0.75, len(throughputs)))
    ax.set_xticklabels(cls_infos, fontsize=10)
    ymax = max(cls_values) * 1.2
    ax.set_ylim((0, ymax))
    ax.set_ylabel("Throughput (predictions/sec)")
    ax.set_title(
        "Prediction Throughput for different estimators (%d features)"
        % configuration["n_features"]
    )
    plt.show()

throughputs = benchmark_throughputs(configuration)
plot_benchmark_throughput(throughputs, configuration)

Zusammenfassung

In diesem Lab haben wir gelernt, wie man Scikit-Learn-Schätzer verwendet, um die Vorhersageverzögerung verschiedener Regressoren zu benchmarken. Wir haben die Verzögerung gemessen, wenn wir in batch- oder atomarem Modus vorhersagen, und wir haben die Verteilung der Vorhersageverzögerung als Boxplot dargestellt. Wir haben auch den Einfluss der Anzahl der Merkmale auf die Vorhersagezeit abgeschätzt und die Entwicklung der Vorhersagezeit in Abhängigkeit von der Anzahl der Merkmale geplottet. Schließlich haben wir die Durchsatzleistung für verschiedene Schätzer gemessen und die Vorhersagedurchsatzleistung für verschiedene Schätzer geplottet.