
labex.io

NumPy Cheatsheet
Essential operations for numerical computing and array manipulation

This cheatsheet provides a quick reference to fundamental NumPy operations, syntax, and advanced features, ideal for both beginners
and experienced data scientists for efficient numerical computing and array processing.

Array Creation
Create and initialize arrays

Array Indexing
Access and subset array data

Array Operations
Mathematical and logical operations

Statistical Functions
Perform statistical computations

Linear Algebra
Matrix operations and decompositions

Array Creation & Initialization

import numpy as np
1D array from list
arr = np.array([1, 2, 3, 4])
2D array from nested lists
arr2d = np.array([[1, 2], [3, 4]])
Specify data type
arr = np.array([1, 2, 3], dtype=float)
Array of strings
arr_str = np.array(['a', 'b', 'c'])

Array of zeros
zeros = np.zeros(5) # 1D
zeros2d = np.zeros((3, 4)) # 2D
Array of ones
ones = np.ones((2, 3))
Specify data type
zeros_int = np.zeros(5, dtype=int)

3x3 identity matrix
identity = np.eye(3)
Alternative method
identity2 = np.identity(4)

From Lists: `np.array()`

Create arrays from Python lists or nested lists.

Zeros and Ones: `np.zeros()` / `np.ones()`

Create arrays filled with zeros or ones.

Identity Matrix: `np.eye()` / `np.identity()`

Create identity matrices for linear algebra operations.

Similar to Python range
arr = np.arange(10) # 0 to 9
arr = np.arange(2, 10, 2) # 2, 4, 6, 8
Evenly spaced values
arr = np.linspace(0, 1, 5) # 5 values from 0 to 1
Including endpoint
arr = np.linspace(0, 10, 11)

Random values between 0 and 1
rand = np.random.random((2, 3))
Random integers
rand_int = np.random.randint(0, 10, size=(3, 3))
Normal distribution
normal = np.random.normal(0, 1, size=5)
Set random seed for reproducibility
np.random.seed(42)

Fill with specific value
full_arr = np.full((2, 3), 7)
Empty array (uninitialized)
empty_arr = np.empty((2, 2))
Like existing array shape
like_arr = np.zeros_like(arr)

Range Arrays: `np.arange()` / `np.linspace()`

Create arrays with evenly spaced values.

Random Arrays: `np.random`

Generate arrays with random values.

Special Arrays: `np.full()` / `np.empty()`

Create arrays with specific values or uninitialized.

Array Properties & Structure
Understand the structure and attributes of your arrays.

Array dimensions (tuple)
arr.shape
Total number of elements
arr.size
Number of dimensions
arr.ndim
Data type of elements
arr.dtype
Size of each element in bytes
arr.itemsize

01

Basic Properties: `shape` /
`size` / `ndim`
Get fundamental information about array
dimensions and size.

Memory usage in bytes
arr.nbytes
Array info (for debugging)
arr.flags
Check if array owns its data
arr.owndata
Base object (if array is a view)
arr.base

02

Array Info: `arr.info()` /
Memory Usage
Get detailed information about array
memory usage and structure.

Convert to different type
arr.astype(float)
arr.astype(int)
arr.astype(str)
More specific types
arr.astype(np.float32)
arr.astype(np.int16)

03

Data Types: `astype()`
Convert between different data types
efficiently.

Array Indexing & Slicing

Single element
arr[0] # First element
arr[-1] # Last element
2D array indexing
arr2d[0, 1] # Row 0, Column 1
arr2d[1] # Entire row 1
Slicing
arr[1:4] # Elements 1 to 3
arr[::2] # Every second element
arr[::-1] # Reverse array

Simple condition
arr[arr > 5]
Multiple conditions
arr[(arr > 2) & (arr < 8)]
arr[(arr < 2) | (arr > 8)]
Boolean array
mask = arr > 3
filtered = arr[mask]

Basic Indexing: `arr[index]`

Access individual elements and slices.

Boolean Indexing: `arr[condition]`

Filter arrays based on conditions.

Index with array of indices
indices = [0, 2, 4]
arr[indices]
2D fancy indexing
arr2d[[0, 1], [1, 2]] # Elements (0,1) and (1,2)
Combined with slicing
arr2d[1:, [0, 2]]

Find indices where condition is true
indices = np.where(arr > 5)
Conditional replacement
result = np.where(arr > 5, arr, 0) # Replace values f5
with 0
Multiple conditions
result = np.where(arr > 5, 'high', 'low')

Advanced Indexing: Fancy Indexing

Use arrays of indices to access multiple elements.

Where Function: `np.where()`

Conditional selection and element replacement.

Array Manipulation & Reshaping

Reshape (creates view if possible)
arr.reshape(2, 3)
arr.reshape(-1, 1) # -1 means infer dimension
Resize (modifies original array)
arr.resize((2, 3))
Flatten to 1D
arr.flatten() # Returns copy
arr.ravel() # Returns view if possible

Simple transpose
arr2d.T
Transpose with axes specification
arr.transpose()
np.transpose(arr)
For higher dimensions
arr3d.transpose(2, 0, 1)

Reshaping: `reshape()` / `resize()` /
`flatten()`

Change array dimensions while preserving data.

Transposing: `T` / `transpose()`

Swap array axes for matrix operations.

Append elements
np.append(arr, [4, 5])
Insert at specific position
np.insert(arr, 1, 99)
Delete elements
np.delete(arr, [1, 3])
Repeat elements
np.repeat(arr, 3)
np.tile(arr, 2)

Concatenate along existing axis
np.concatenate([arr1, arr2])
np.concatenate([arr1, arr2], axis=1)
Stack arrays (creates new axis)
np.vstack([arr1, arr2]) # Vertically
np.hstack([arr1, arr2]) # Horizontally
np.dstack([arr1, arr2]) # Depth-wise

Adding/Removing Elements

Modify array size by adding or removing elements.

Combining Arrays: `concatenate()` / `stack()`

Join multiple arrays together.

Mathematical Operations

Element-wise operations
arr1 + arr2
arr1 - arr2
arr1 * arr2 # Element-wise multiplication
arr1 / arr2
arr1 ** 2 # Squaring
arr1 % 3 # Modulo operation

Trigonometric functions
np.sin(arr)
np.cos(arr)
np.tan(arr)
Exponential and logarithmic
np.exp(arr)
np.log(arr)
np.log10(arr)
Square root and power
np.sqrt(arr)
np.power(arr, 3)

Basic Arithmetic: `+`, `-`, `*`, `/`

Element-wise arithmetic operations on arrays.

Universal Functions (ufuncs)

Apply mathematical functions element-wise.

Basic statistics
np.sum(arr)
np.mean(arr)
np.std(arr) # Standard deviation
np.var(arr) # Variance
np.min(arr)
np.max(arr)
Along specific axis
np.sum(arr2d, axis=0) # Sum along rows
np.mean(arr2d, axis=1) # Mean along columns

Comparison operators
arr > 5
arr == 3
arr != 0
Array comparisons
np.array_equal(arr1, arr2)
np.allclose(arr1, arr2) # Within tolerance
Any/all operations
np.any(arr > 5)
np.all(arr > 0)

Aggregation Functions

Compute summary statistics across array dimensions.

Comparison Operations

Element-wise comparisons returning boolean arrays.

Linear Algebra
Matrix operations and linear algebra computations.

Matrix multiplication
np.dot(A, B)
A @ B # Python 3.5+ operator
Element-wise multiplication
A * B
Matrix power
np.linalg.matrix_power(A, 3)

Eigenvalues and eigenvectors
eigenvals, eigenvecs = np.linalg.eig(A)
Singular Value Decomposition
U, s, Vt = np.linalg.svd(A)
QR decomposition
Q, R = np.linalg.qr(A)

Matrix Operations: `np.dot()` / `@`

Perform matrix multiplication and dot products.

Decompositions: `np.linalg`

Matrix decompositions for advanced computations.

Determinant
np.linalg.det(A)
Matrix inverse
np.linalg.inv(A)
Pseudo-inverse
np.linalg.pinv(A)
Matrix rank
np.linalg.matrix_rank(A)
Trace (sum of diagonal)
np.trace(A)

Solve Ax = b
x = np.linalg.solve(A, b)
Least squares solution
x = np.linalg.lstsq(A, b, rcond=None)[0]

Matrix Properties

Compute important matrix characteristics.

Solving Linear Systems: `np.linalg.solve()`

Solve systems of linear equations.

Array Input/Output
Save and load arrays using various formats.

Save single array
np.save('array.npy', arr)
Load array
loaded_arr = np.load('array.npy')
Save multiple arrays
np.savez('arrays.npz', a=arr1, b=arr2)
Load multiple arrays
data = np.load('arrays.npz')
arr1_loaded = data['a']

Load from CSV/text file
arr = np.loadtxt('data.csv', delimiter=',')
Skip header row
arr = np.loadtxt('data.csv', delimiter=',', skiprows=1)
Save to text file
np.savetxt('output.csv', arr, delimiter=',', fmt='%.2f')

NumPy Binary: `np.save()` / `np.load()`

Efficient binary format for NumPy arrays.

Text Files: `np.loadtxt()` / `np.savetxt()`

Read and write arrays as text files.

Handle missing values
arr = np.genfromtxt('data.csv', delimiter=',',
 missing_values='N/A', filling_values=0)
Named columns
data = np.genfromtxt('data.csv', delimiter=',',
 names=True, dtype=None)

Create memory-mapped array
mmap_arr = np.memmap('large_array.dat',
dtype='float32',
 mode='w+', shape=(1000000,))
Access like regular array but stored on disk
mmap_arr[0:10] = np.random.random(10)

CSV with Structured Data: `np.genfromtxt()`

Advanced text file reading with missing data handling.

Memory Mapping: `np.memmap()`

Work with arrays too large to fit in memory.

Performance & Broadcasting
Optimize array operations and understand broadcasting rules.

Broadcasting examples
arr1 = np.array([[1, 2, 3]]) # Shape (1, 3)
arr2 = np.array([[1], [2]]) # Shape (2, 1)
result = arr1 + arr2 # Shape (2, 3)

Scalar broadcasting
arr + 5 # Adds 5 to all elements
arr * 2 # Multiplies all elements by 2

Instead of loops, use vectorized operations
Bad: for loop
result = []
for x in arr:
 result.append(x ** 2)

Good: vectorized
result = arr ** 2

Custom vectorized function
def custom_func(x):
 return x ** 2 + 2 * x + 1
vec_func = np.vectorize(custom_func)
result = vec_func(arr)

Broadcasting Rules

Understand how NumPy handles operations on different shaped
arrays.

Vectorized Operations

Use NumPy's built-in functions instead of Python loops.

Use appropriate data types
arr_int8 = arr.astype(np.int8) # 1 byte per element
arr_float32 = arr.astype(np.float32) # 4 bytes vs 8 for
float64

Views vs copies
view = arr[::2] # Creates view (shares memory)
copy = arr[::2].copy() # Creates copy (new memory)

Check if array is view or copy
view.base is arr # True for view

Use in-place operations when possible
arr += 5 # Instead of arr = arr + 5
np.add(arr, 5, out=arr) # Explicit in-place

Minimize array creation
Bad: creates intermediate arrays
result = ((arr + 1) * 2) ** 2
Better: use compound operations where possible

Memory Optimization

Techniques for efficient memory usage with large arrays.

Performance Tips

Best practices for fast NumPy code.

Random Number Generation
Generate random numbers and samples for simulations and testing.

Random floats [0, 1)
np.random.random(5)
Random integers
np.random.randint(0, 10,
size=5)
Normal distribution
np.random.normal(mu=0,
sigma=1, size=5)
Uniform distribution
np.random.uniform(-1, 1,
size=5)

Basic Random:
`np.random`
Generate random numbers from
various distributions.

Random choice from array
np.random.choice(arr, size=3)
Without replacement
np.random.choice(arr, size=3,
replace=False)
Shuffle array in-place
np.random.shuffle(arr)
Random permutation
np.random.permutation(arr)

Sampling: `choice()` /
`shuffle()`
Sample from existing data or permute
arrays.

Set seed for reproducibility
np.random.seed(42)
Modern approach: Generator
rng =
np.random.default_rng(42)
rng.random(5)
rng.integers(0, 10, size=5)
rng.normal(0, 1, size=5)

Seeds & Generators
Control randomness for reproducible
results.

Statistical Functions
Comprehensive statistical operations on arrays.

Central tendency
np.mean(arr)
np.median(arr)
Spread measures
np.std(arr) # Standard deviation
np.var(arr) # Variance
np.ptp(arr) # Peak to peak (max - min)
Percentiles
np.percentile(arr, [25, 50, 75])
np.quantile(arr, [0.25, 0.5, 0.75])

Correlation coefficient
np.corrcoef(x, y)
Covariance
np.cov(x, y)
Cross-correlation
np.correlate(x, y, mode='full')

Descriptive Statistics

Basic statistical measures of central tendency and spread.

Correlation & Covariance

Measure relationships between variables.

Histogram
counts, bins = np.histogram(arr, bins=10)
2D histogram
H, xedges, yedges = np.histogram2d(x, y, bins=10)
Digitize (assign bin indices)
bin_indices = np.digitize(arr, bins)

Weighted statistics
np.average(arr, weights=weights)
Unique values and counts
unique_vals, counts = np.unique(arr,
return_counts=True)
Bincount (for integer arrays)
np.bincount(int_arr)

Histogram & Binning

Analyze data distribution and create bins.

Special Statistical Functions

Advanced statistical computations.

NumPy Installation & Setup
Install and configure NumPy for your Python environment.

Install NumPy
pip install numpy
Upgrade to latest version
pip install numpy --upgrade
Install specific version
pip install numpy==1.21.0
Show package information
pip show numpy

Pip: `pip install numpy`
Standard Python package installer.

Install NumPy in current
environment
conda install numpy
Update NumPy
conda update numpy
Install from conda-forge
conda install -c conda-forge
numpy
Create environment with
NumPy
conda create -n myenv numpy

Conda: `conda install
numpy`
Package manager for
Anaconda/Miniconda environments.

Standard import
import numpy as np
Check version
print(np.__version__)
Check build information
np.show_config()
Set print options
np.set_printoptions(precision=2,
suppress=True)

Check Installation &
Import
Verify your NumPy installation and
standard import.

Advanced Features
Specialized NumPy functionality for advanced use cases.

Define structured data type
dt = np.dtype([('name', 'U10'), ('age', 'i4'), ('weight', 'f4')])
Create structured array
people = np.array([('Alice', 25, 55.0), ('Bob', 30, 70.5)],
dtype=dt)
Access fields
people['name']
people['age']

Create masked array
masked_arr = np.ma.array([1, 2, 3, 4, 5], mask=[0, 0, 1, 0,
0])
Operations ignore masked values
np.ma.mean(masked_arr)
Fill masked values
filled = masked_arr.filled(0)

Structured Arrays

Arrays with named fields for complex data structures.

Masked Arrays: `np.ma`

Handle arrays with missing or invalid data.

Create polynomial (coefficients in descending order)
p = np.poly1d([1, -2, 1]) # x² - 2x + 1
Evaluate polynomial
p(5) # Evaluate at x=5
Find roots
np.roots([1, -2, 1])
Polynomial fitting
coeff = np.polyfit(x, y, degree=2)

1D FFT
fft_result = np.fft.fft(signal)
Frequencies
freqs = np.fft.fftfreq(len(signal))
Inverse FFT
reconstructed = np.fft.ifft(fft_result)
2D FFT for images
fft2d = np.fft.fft2(image)

Polynomials: `np.poly1d`

Work with polynomial expressions and operations.

Fast Fourier Transform: `np.fft`

Frequency domain analysis and signal processing.

Reference: This cheatsheet covers essential NumPy commands and modern practices for efficient numerical computing and array
manipulation in data science workflows.

labex.io

https://labex.io/learn
https://labex.io/learn/numpy

